#include "../std_include.hpp" #include "module_mapping.hpp" #include #include #include namespace { uint64_t get_first_section_offset(const PENTHeaders_t& nt_headers, const uint64_t nt_headers_offset) { const uint8_t* nt_headers_addr = reinterpret_cast(&nt_headers); size_t optional_header_offset = reinterpret_cast(&(nt_headers.OptionalHeader)) - reinterpret_cast(&nt_headers); size_t optional_header_size = nt_headers.FileHeader.SizeOfOptionalHeader; const uint8_t* first_section_addr = nt_headers_addr + optional_header_offset + optional_header_size; const auto first_section_absolute = reinterpret_cast(first_section_addr); const auto absolute_base = reinterpret_cast(&nt_headers); return nt_headers_offset + (first_section_absolute - absolute_base); } std::vector read_mapped_memory(const emulator& emu, const mapped_module& binary) { std::vector memory{}; memory.resize(binary.size_of_image); emu.read_memory(binary.image_base, memory.data(), memory.size()); return memory; } void collect_exports(mapped_module& binary, const utils::safe_buffer_accessor buffer, const PEOptionalHeader_t& optional_header) { auto& export_directory_entry = optional_header.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]; if (export_directory_entry.VirtualAddress == 0 || export_directory_entry.Size == 0) { return; } const auto export_directory = buffer.as(export_directory_entry. VirtualAddress).get(); const auto names_count = export_directory.NumberOfNames; //const auto function_count = export_directory.NumberOfFunctions; const auto names = buffer.as(export_directory.AddressOfNames); const auto ordinals = buffer.as(export_directory.AddressOfNameOrdinals); const auto functions = buffer.as(export_directory.AddressOfFunctions); binary.exports.reserve(names_count); for (DWORD i = 0; i < names_count; i++) { const auto ordinal = ordinals.get(i); exported_symbol symbol{}; symbol.ordinal = export_directory.Base + ordinal; symbol.rva = functions.get(ordinal); symbol.address = binary.image_base + symbol.rva; symbol.name = buffer.as_string(names.get(i)); binary.exports.push_back(std::move(symbol)); } for (const auto& symbol : binary.exports) { binary.address_names.try_emplace(symbol.address, symbol.name); } } template requires(std::is_integral_v) void apply_relocation(const utils::safe_buffer_accessor buffer, const uint64_t offset, const uint64_t delta) { const auto obj = buffer.as(offset); const auto value = obj.get(); const auto new_value = value + static_cast(delta); obj.set(new_value); } void apply_relocations(const mapped_module& binary, const utils::safe_buffer_accessor buffer, const PEOptionalHeader_t& optional_header) { const auto delta = binary.image_base - optional_header.ImageBase; if (delta == 0) { return; } const auto directory = &optional_header.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC]; if (directory->Size == 0) { return; } auto relocation_offset = directory->VirtualAddress; const auto relocation_end = relocation_offset + directory->Size; while (relocation_offset < relocation_end) { const auto relocation = buffer.as(relocation_offset).get(); if (relocation.VirtualAddress <= 0 || relocation.SizeOfBlock <= sizeof(IMAGE_BASE_RELOCATION)) { break; } const auto data_size = relocation.SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION); const auto entry_count = data_size / sizeof(uint16_t); const auto entries = buffer.as(relocation_offset + sizeof(IMAGE_BASE_RELOCATION)); relocation_offset += relocation.SizeOfBlock; for (size_t i = 0; i < entry_count; ++i) { const auto entry = entries.get(i); const int type = entry >> 12; const int offset = entry & 0xfff; const auto total_offset = relocation.VirtualAddress + offset; switch (type) { case IMAGE_REL_BASED_ABSOLUTE: break; case IMAGE_REL_BASED_HIGHLOW: apply_relocation(buffer, total_offset, delta); break; case IMAGE_REL_BASED_DIR64: apply_relocation(buffer, total_offset, delta); break; default: throw std::runtime_error("Unknown relocation type: " + std::to_string(type)); } } } } void map_sections(emulator& emu, mapped_module& binary, const utils::safe_buffer_accessor buffer, const PENTHeaders_t& nt_headers, const uint64_t nt_headers_offset) { const auto first_section_offset = get_first_section_offset(nt_headers, nt_headers_offset); const auto sections = buffer.as(first_section_offset); for (size_t i = 0; i < nt_headers.FileHeader.NumberOfSections; ++i) { const auto section = sections.get(i); const auto target_ptr = binary.image_base + section.VirtualAddress; if (section.SizeOfRawData > 0) { const auto size_of_data = std::min(section.SizeOfRawData, section.Misc.VirtualSize); const auto* source_ptr = buffer.get_pointer_for_range(section.PointerToRawData, size_of_data); emu.write_memory(target_ptr, source_ptr, size_of_data); } auto permissions = memory_permission::none; if (section.Characteristics & IMAGE_SCN_MEM_EXECUTE) { permissions |= memory_permission::exec; } if (section.Characteristics & IMAGE_SCN_MEM_READ) { permissions |= memory_permission::read; } if (section.Characteristics & IMAGE_SCN_MEM_WRITE) { permissions |= memory_permission::write; } const auto size_of_section = page_align_up(std::max(section.SizeOfRawData, section.Misc.VirtualSize)); emu.protect_memory(target_ptr, size_of_section, permissions, nullptr); mapped_section section_info{}; section_info.region.start = target_ptr; section_info.region.length = size_of_section; section_info.region.permissions = permissions; for (size_t j = 0; j < sizeof(section.Name) && section.Name[j]; ++j) { section_info.name.push_back(static_cast(section.Name[j])); } binary.sections.push_back(std::move(section_info)); } } } mapped_module map_module_from_data(emulator& emu, const std::span data, std::filesystem::path file) { mapped_module binary{}; binary.path = std::move(file); binary.name = binary.path.filename().string(); utils::safe_buffer_accessor buffer{data}; const auto dos_header = buffer.as(0).get(); const auto nt_headers_offset = dos_header.e_lfanew; const auto nt_headers = buffer.as>(nt_headers_offset).get(); auto& optional_header = nt_headers.OptionalHeader; if (nt_headers.FileHeader.Machine != PEMachineType::AMD64) { throw std::runtime_error("Unsupported architecture!"); } binary.image_base = optional_header.ImageBase; binary.size_of_image = page_align_up(optional_header.SizeOfImage); // TODO: Sanitize if (!emu.allocate_memory(binary.image_base, binary.size_of_image, memory_permission::read)) { binary.image_base = emu.find_free_allocation_base(binary.size_of_image); const auto is_dll = nt_headers.FileHeader.Characteristics & IMAGE_FILE_DLL; const auto has_dynamic_base = optional_header.DllCharacteristics & IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE; const auto is_relocatable = is_dll || has_dynamic_base; if (!is_relocatable || !emu.allocate_memory(binary.image_base, binary.size_of_image, memory_permission::read)) { throw std::runtime_error("Memory range not allocatable"); } } binary.entry_point = binary.image_base + optional_header.AddressOfEntryPoint; const auto* header_buffer = buffer.get_pointer_for_range(0, optional_header.SizeOfHeaders); emu.write_memory(binary.image_base, header_buffer, optional_header.SizeOfHeaders); map_sections(emu, binary, buffer, nt_headers, nt_headers_offset); auto mapped_memory = read_mapped_memory(emu, binary); utils::safe_buffer_accessor mapped_buffer{mapped_memory}; apply_relocations(binary, mapped_buffer, optional_header); collect_exports(binary, mapped_buffer, optional_header); emu.write_memory(binary.image_base, mapped_memory.data(), mapped_memory.size()); return binary; } mapped_module map_module_from_file(emulator& emu, std::filesystem::path file) { const auto data = utils::io::read_file(file); if (data.empty()) { throw std::runtime_error("Bad file data"); } return map_module_from_data(emu, data, std::move(file)); } bool unmap_module(emulator& emu, const mapped_module& mod) { return emu.release_memory(mod.image_base, mod.size_of_image); }