#include #include "std_include.hpp" #include "emulator_utils.hpp" #include "process_context.hpp" #include "syscalls.hpp" #include "reflect_extension.hpp" #include #include #include "gdb_stub.hpp" #include "module_mapper.hpp" #include #define GS_SEGMENT_ADDR 0x6000000ULL #define GS_SEGMENT_SIZE (20 << 20) // 20 MB #define IA32_GS_BASE_MSR 0xC0000101 #define STACK_SIZE 0x40000 #define STACK_ADDRESS (0x800000000000 - STACK_SIZE) #define KUSD_ADDRESS 0x7ffe0000 bool use_gdb = true; namespace { template class type_info { public: type_info() { this->type_name_ = reflect::type_name(); reflect::for_each([this](auto I) { const auto member_name = reflect::member_name(); const auto member_offset = reflect::offset_of(); this->members_[member_offset] = member_name; }); } std::string get_member_name(const size_t offset) const { size_t last_offset{}; std::string_view last_member{}; for (const auto& member : this->members_) { if (offset == member.first) { return member.second; } if (offset < member.first) { const auto diff = offset - last_offset; return std::string(last_member) + "+" + std::to_string(diff); } last_offset = member.first; last_member = member.second; } return ""; } const std::string& get_type_name() const { return this->type_name_; } private: std::string type_name_{}; std::map members_{}; }; template void watch_object(x64_emulator& emu, emulator_object object) { const type_info info{}; emu.hook_memory_read(object.value(), object.size(), [i = std::move(info), object](const uint64_t address, size_t) { const auto offset = address - object.value(); printf("%s: %llX (%s)\n", i.get_type_name().c_str(), offset, i.get_member_name(offset).c_str()); }); } void setup_stack(x64_emulator& emu, const uint64_t stack_base, const size_t stack_size) { emu.allocate_memory(stack_base, stack_size, memory_permission::read_write); const uint64_t stack_end = stack_base + stack_size; emu.reg(x64_register::rsp, stack_end); } emulator_allocator setup_gs_segment(x64_emulator& emu, const uint64_t segment_base, const uint64_t size) { struct msr_value { uint32_t id; uint64_t value; }; const msr_value value{ IA32_GS_BASE_MSR, segment_base }; emu.write_register(x64_register::msr, &value, sizeof(value)); emu.allocate_memory(segment_base, size, memory_permission::read_write); return {emu, segment_base, size}; } emulator_object setup_kusd(x64_emulator& emu) { emu.allocate_memory(KUSD_ADDRESS, page_align_up(sizeof(KUSER_SHARED_DATA)), memory_permission::read); const emulator_object kusd_object{emu, KUSD_ADDRESS}; kusd_object.access([](KUSER_SHARED_DATA& kusd) { const auto& real_kusd = *reinterpret_cast(KUSD_ADDRESS); memcpy(&kusd, &real_kusd, sizeof(kusd)); kusd.ImageNumberLow = IMAGE_FILE_MACHINE_I386; kusd.ImageNumberHigh = IMAGE_FILE_MACHINE_AMD64; memset(&kusd.ProcessorFeatures, 0, sizeof(kusd.ProcessorFeatures)); // ... }); return kusd_object; } uint64_t copy_string(x64_emulator& emu, emulator_allocator& allocator, const void* base_ptr, const uint64_t offset, const size_t length) { if (!length) { return 0; } const auto length_to_allocate = length + 2; const auto str_obj = allocator.reserve(length_to_allocate); emu.write_memory(str_obj, static_cast(base_ptr) + offset, length); return str_obj; } ULONG copy_string_as_relative(x64_emulator& emu, emulator_allocator& allocator, const uint64_t result_base, const void* base_ptr, const uint64_t offset, const size_t length) { const auto address = copy_string(emu, allocator, base_ptr, offset, length); if (!address) { return 0; } assert(address > result_base); return static_cast(address - result_base); } emulator_object clone_api_set_map(x64_emulator& emu, emulator_allocator& allocator, const API_SET_NAMESPACE& orig_api_set_map) { const auto api_set_map_obj = allocator.reserve(); const auto ns_entries_obj = allocator.reserve(orig_api_set_map.Count); const auto hash_entries_obj = allocator.reserve(orig_api_set_map.Count); api_set_map_obj.access([&](API_SET_NAMESPACE& api_set) { api_set = orig_api_set_map; api_set.EntryOffset = static_cast(ns_entries_obj.value() - api_set_map_obj.value()); api_set.HashOffset = static_cast(hash_entries_obj.value() - api_set_map_obj.value()); }); const auto orig_ns_entries = offset_pointer(&orig_api_set_map, orig_api_set_map.EntryOffset); const auto orig_hash_entries = offset_pointer(&orig_api_set_map, orig_api_set_map.HashOffset); for (ULONG i = 0; i < orig_api_set_map.Count; ++i) { auto ns_entry = orig_ns_entries[i]; const auto hash_entry = orig_hash_entries[i]; ns_entry.NameOffset = copy_string_as_relative(emu, allocator, api_set_map_obj.value(), &orig_api_set_map, ns_entry.NameOffset, ns_entry.NameLength); if (!ns_entry.ValueCount) { continue; } const auto values_obj = allocator.reserve(ns_entry.ValueCount); const auto orig_values = offset_pointer(&orig_api_set_map, ns_entry.ValueOffset); ns_entry.ValueOffset = static_cast(values_obj.value() - api_set_map_obj.value()); for (ULONG j = 0; j < ns_entry.ValueCount; ++j) { auto value = orig_values[j]; value.ValueOffset = copy_string_as_relative(emu, allocator, api_set_map_obj.value(), &orig_api_set_map, value.ValueOffset, value.ValueLength); if (value.NameLength) { value.NameOffset = copy_string_as_relative(emu, allocator, api_set_map_obj.value(), &orig_api_set_map, value.NameOffset, value.NameLength); } values_obj.write(value, j); } ns_entries_obj.write(ns_entry, i); hash_entries_obj.write(hash_entry, i); } //watch_object(emu, api_set_map_obj); return api_set_map_obj; } emulator_object build_api_set_map(x64_emulator& emu, emulator_allocator& allocator) { const auto& orig_api_set_map = *NtCurrentTeb()->ProcessEnvironmentBlock->ApiSetMap; return clone_api_set_map(emu, allocator, orig_api_set_map); } emulator_allocator create_allocator(emulator& emu, const size_t size) { const auto base = emu.find_free_allocation_base(size); emu.allocate_memory(base, size, memory_permission::read_write); return emulator_allocator{emu, base, size}; } process_context setup_context(x64_emulator& emu) { setup_stack(emu, STACK_ADDRESS, STACK_SIZE); process_context context{}; context.kusd = setup_kusd(emu); context.gs_segment = setup_gs_segment(emu, GS_SEGMENT_ADDR, GS_SEGMENT_SIZE); auto allocator = create_allocator(emu, 1 << 20); auto& gs = context.gs_segment; context.teb = gs.reserve(); context.peb = gs.reserve(); context.process_params = gs.reserve(); context.teb.access([&](TEB& teb) { teb.ClientId.UniqueProcess = reinterpret_cast(1); teb.ClientId.UniqueThread = reinterpret_cast(2); teb.NtTib.StackLimit = reinterpret_cast(STACK_ADDRESS); teb.NtTib.StackBase = reinterpret_cast((STACK_ADDRESS + STACK_SIZE)); teb.NtTib.Self = &context.teb.ptr()->NtTib; teb.ProcessEnvironmentBlock = context.peb.ptr(); }); context.process_params.access([&](RTL_USER_PROCESS_PARAMETERS& proc_params) { proc_params.Length = sizeof(proc_params); proc_params.Flags = 0x6001; gs.make_unicode_string(proc_params.CurrentDirectory.DosPath, L"C:\\Users\\mauri\\Desktop"); gs.make_unicode_string(proc_params.ImagePathName, L"C:\\Users\\mauri\\Desktop\\ConsoleApplication6.exe"); gs.make_unicode_string(proc_params.CommandLine, L"C:\\Users\\mauri\\Desktop\\ConsoleApplication6.exe"); }); context.peb.access([&](PEB& peb) { peb.ImageBaseAddress = nullptr; peb.ProcessHeap = nullptr; peb.ProcessHeaps = nullptr; peb.ProcessParameters = context.process_params.ptr(); peb.ApiSetMap = build_api_set_map(emu, allocator).ptr(); }); return context; } enum class gdb_registers { rax = 0, rbx, rcx, rdx, rsi, rdi, rbp, rsp, r8, r9, r10, r11, r12, r13, r14, r15, rip, eflags, end, }; std::unordered_map register_map{ {gdb_registers::rax, x64_register::rax}, {gdb_registers::rbx, x64_register::rbx}, {gdb_registers::rcx, x64_register::rcx}, {gdb_registers::rdx, x64_register::rdx}, {gdb_registers::rsi, x64_register::rsi}, {gdb_registers::rdi, x64_register::rdi}, {gdb_registers::rbp, x64_register::rbp}, {gdb_registers::rsp, x64_register::rsp}, {gdb_registers::r8, x64_register::r8}, {gdb_registers::r9, x64_register::r9}, {gdb_registers::r10, x64_register::r10}, {gdb_registers::r11, x64_register::r11}, {gdb_registers::r12, x64_register::r12}, {gdb_registers::r13, x64_register::r13}, {gdb_registers::r14, x64_register::r14}, {gdb_registers::r15, x64_register::r15}, {gdb_registers::rip, x64_register::rip}, {gdb_registers::eflags, x64_register::rflags}, }; class scoped_emulator_hook { public: scoped_emulator_hook() = default; scoped_emulator_hook(emulator& emu, emulator_hook* hook) : emu_(&emu) , hook_(hook) { } ~scoped_emulator_hook() { this->remove(); } scoped_emulator_hook(const scoped_emulator_hook&) = delete; scoped_emulator_hook& operator=(const scoped_emulator_hook&) = delete; scoped_emulator_hook(scoped_emulator_hook&& obj) noexcept { this->operator=(std::move(obj)); } scoped_emulator_hook& operator=(scoped_emulator_hook&& obj) noexcept { if (this != &obj) { this->remove(); this->emu_ = obj.emu_; this->hook_ = obj.hook_; obj.hook_ = {}; } return *this; } void remove() { if (this->hook_) { this->emu_->delete_hook(this->hook_); this->hook_ = {}; } } private: emulator* emu_{}; emulator_hook* hook_{}; }; class x64_gdb_stub_handler : public gdb_stub_handler { public: x64_gdb_stub_handler(x64_emulator& emu) : emu_(&emu) { } ~x64_gdb_stub_handler() override = default; gdb_action cont() override { try { this->emu_->start_from_ip(); } catch (const std::exception& e) { puts(e.what()); } return gdb_action::resume; } gdb_action stepi() override { try { this->emu_->start_from_ip({}, 1); } catch (const std::exception& e) { puts(e.what()); } return gdb_action::resume; } bool read_reg(const int regno, size_t* value) override { *value = 0; try { const auto entry = register_map.find(static_cast(regno)); if (entry == register_map.end()) { return true; } this->emu_->read_register(entry->second, value, sizeof(*value)); return true; } catch (...) { return true; } } bool write_reg(const int regno, const size_t value) override { try { const auto entry = register_map.find(static_cast(regno)); if (entry == register_map.end()) { return false; } this->emu_->write_register(entry->second, &value, sizeof(value)); return true; } catch (...) { return false; } } bool read_mem(const size_t addr, const size_t len, void* val) override { return this->emu_->try_read_memory(addr, val, len); } bool write_mem(const size_t addr, const size_t len, void* val) override { try { this->emu_->write_memory(addr, val, len); return true; } catch (...) { return false; } } bool set_bp(const size_t addr) override { try { this->hooks_[addr] = scoped_emulator_hook(*this->emu_, this->emu_->hook_memory_execution( addr, 1, [this](uint64_t, size_t) { this->on_interrupt(); })); return true; } catch (...) { return false; } } bool del_bp(const size_t addr) override { try { const auto entry = this->hooks_.find(addr); if (entry == this->hooks_.end()) { return false; } this->hooks_.erase(entry); return true; } catch (...) { return false; } } void on_interrupt() override { this->emu_->stop(); } private: x64_emulator* emu_{}; std::unordered_map hooks_{}; }; uint64_t find_exported_function(const std::vector& exports, const std::string_view name) { for (auto& symbol : exports) { if (symbol.name == name) { return symbol.address; } } return 0; } void run() { const auto emu = unicorn::create_x64_emulator(); auto context = setup_context(*emu); context.executable = *map_file(*emu, R"(C:\Users\mauri\Desktop\ConsoleApplication6.exe)"); context.peb.access([&](PEB& peb) { peb.ImageBaseAddress = reinterpret_cast(context.executable.image_base); }); context.ntdll = *map_file(*emu, R"(C:\Windows\System32\ntdll.dll)"); const auto entry1 = find_exported_function(context.ntdll.exports, "LdrInitializeThunk"); const auto entry2 = find_exported_function(context.ntdll.exports, "RtlUserThreadStart"); (void)entry1; (void)entry2; std::unordered_map export_remap{}; for (const auto& symbol : context.ntdll.exports) { export_remap.try_emplace(symbol.address, symbol.name); } for (const auto& exp : export_remap) { auto name = exp.second; emu->hook_memory_execution(exp.first, 0, [n = std::move(name)](const uint64_t address, const size_t) { printf("Executing function: %s (%llX)\n", n.c_str(), address); }); } syscall_dispatcher dispatcher{context.ntdll.exports}; emu->hook_instruction(x64_hookable_instructions::syscall, [&] { dispatcher.dispatch(*emu, context); }); watch_object(*emu, context.teb); watch_object(*emu, context.peb); watch_object(*emu, context.process_params); watch_object(*emu, context.kusd); /*emu->hook_memory_execution(0, std::numeric_limits::max(), [&](const uint64_t address, const size_t) { if (address == 0x1800D52F4) { //emu->stop(); } printf( "Inst: %16llX - RAX: %16llX - RBX: %16llX - RCX: %16llX - RDX: %16llX - R8: %16llX - R9: %16llX - RDI: %16llX - RSI: %16llX\n", address, emu->reg(x64_register::rax), emu->reg(x64_register::rbx), emu->reg(x64_register::rcx), emu->reg(x64_register::rdx), emu->reg(x64_register::r8), emu->reg(x64_register::r9), emu->reg(x64_register::rdi), emu->reg(x64_register::rsi)); });*/ const auto execution_context = context.gs_segment.reserve(); emu->reg(x64_register::rcx, execution_context.value()); emu->reg(x64_register::rdx, context.ntdll.image_base); emu->reg(x64_register::rip, entry1); try { if (use_gdb) { puts("Launching gdb stub..."); x64_gdb_stub_handler handler{*emu}; run_gdb_stub(handler, "i386:x86-64", static_cast(gdb_registers::end), "0.0.0.0:28960"); } else { emu->start_from_ip(); } } catch (...) { printf("Emulation failed at: %llX\n", emu->reg(x64_register::rip)); throw; } printf("Emulation done.\n"); } } int main(int /*argc*/, char** /*argv*/) { try { do { run(); } while (use_gdb); return 0; } catch (std::exception& e) { puts(e.what()); #ifdef _WIN32 //MessageBoxA(nullptr, e.what(), "ERROR", MB_ICONERROR); #endif } return 1; } #ifdef _WIN32 int WINAPI WinMain(HINSTANCE, HINSTANCE, PSTR, int) { return main(__argc, __argv); } #endif