mirror of
https://github.com/ReVanced/revanced-bots.git
synced 2026-01-25 04:01:02 +00:00
Add OCR, add configuration
This commit is contained in:
@@ -1,51 +1,53 @@
|
||||
import FastText from 'fasttext.js';
|
||||
const ft = new FastText({
|
||||
train: {
|
||||
// number of concurrent threads
|
||||
thread: 8,
|
||||
// verbosity level [2]
|
||||
verbose: 4,
|
||||
// number of negatives sampled [5]
|
||||
neg: 7,
|
||||
// loss function {ns, hs, softmax} [ns]
|
||||
loss: 'ns',
|
||||
// learning rate [0.05]
|
||||
lr: 1,
|
||||
// change the rate of updates for the learning rate [100]
|
||||
lrUpdateRate: 1000,
|
||||
// max length of word ngram [1]
|
||||
wordNgrams: 5,
|
||||
// minimal number of word occurences
|
||||
minCount: 1,
|
||||
// minimal number of word occurences
|
||||
minCountLabel: 1,
|
||||
// size of word vectors [100]
|
||||
dim: 100,
|
||||
// size of the context window [5]
|
||||
ws: 5,
|
||||
// number of epochs [5]
|
||||
epoch: 20,
|
||||
// number of buckets [2000000]
|
||||
bucket: 2000000,
|
||||
// min length of char ngram [3]
|
||||
minn: process.env.TRAIN_MINN || 3,
|
||||
// max length of char ngram [6]
|
||||
maxn: process.env.TRAIN_MAXN || 6,
|
||||
// sampling threshold [0.0001]
|
||||
t: 0.0001,
|
||||
// load pre trained word vectors from unsupervised model
|
||||
pretrainedVectors: ''
|
||||
},
|
||||
serializeTo: '/workspaces/revanced-helper/server/model/model',
|
||||
trainFile: '/workspaces/revanced-helper/server/model/train.tsv',
|
||||
});
|
||||
import { join } from 'node:path';
|
||||
|
||||
export default async function trainAI(unload, load) {
|
||||
//unload();
|
||||
export default async function trainAI() {
|
||||
const ft = new FastText({
|
||||
train: {
|
||||
// number of concurrent threads
|
||||
thread: 8,
|
||||
// verbosity level [2]
|
||||
verbose: 4,
|
||||
// number of negatives sampled [5]
|
||||
neg: 7,
|
||||
// loss function {ns, hs, softmax} [ns]
|
||||
loss: 'ns',
|
||||
// learning rate [0.05]
|
||||
lr: 1,
|
||||
// change the rate of updates for the learning rate [100]
|
||||
lrUpdateRate: 1000,
|
||||
// max length of word ngram [1]
|
||||
wordNgrams: 5,
|
||||
// minimal number of word occurences
|
||||
minCount: 1,
|
||||
// minimal number of word occurences
|
||||
minCountLabel: 1,
|
||||
// size of word vectors [100]
|
||||
dim: 100,
|
||||
// size of the context window [5]
|
||||
ws: 5,
|
||||
// number of epochs [5]
|
||||
epoch: 20,
|
||||
// number of buckets [2000000]
|
||||
bucket: 2000000,
|
||||
// min length of char ngram [3]
|
||||
minn: process.env.TRAIN_MINN || 3,
|
||||
// max length of char ngram [6]
|
||||
maxn: process.env.TRAIN_MAXN || 6,
|
||||
// sampling threshold [0.0001]
|
||||
t: 0.0001,
|
||||
// load pre trained word vectors from unsupervised model
|
||||
pretrainedVectors: ''
|
||||
},
|
||||
serializeTo: join(global.__dirname, global.config.fasttext.loadModel).replace('.bin', ''),
|
||||
trainFile: join(global.__dirname, global.config.fasttext.trainFile),
|
||||
});
|
||||
|
||||
global.ft.unload();
|
||||
|
||||
await ft.train()
|
||||
|
||||
// load();
|
||||
global.ft.load();
|
||||
|
||||
return;
|
||||
}
|
||||
Reference in New Issue
Block a user