import FastText from 'fasttext.js'; const ft = new FastText({ train: { // number of concurrent threads thread: 8, // verbosity level [2] verbose: 4, // number of negatives sampled [5] neg: 7, // loss function {ns, hs, softmax} [ns] loss: 'ns', // learning rate [0.05] lr: 1, // change the rate of updates for the learning rate [100] lrUpdateRate: 1000, // max length of word ngram [1] wordNgrams: 5, // minimal number of word occurences minCount: 1, // minimal number of word occurences minCountLabel: 1, // size of word vectors [100] dim: 100, // size of the context window [5] ws: 5, // number of epochs [5] epoch: 20, // number of buckets [2000000] bucket: 2000000, // min length of char ngram [3] minn: process.env.TRAIN_MINN || 3, // max length of char ngram [6] maxn: process.env.TRAIN_MAXN || 6, // sampling threshold [0.0001] t: 0.0001, // load pre trained word vectors from unsupervised model pretrainedVectors: '' }, serializeTo: '/workspaces/revanced-helper/server/model/model', trainFile: '/workspaces/revanced-helper/server/model/train.tsv', }); export default async function trainAI(unload, load) { //unload(); await ft.train() // load(); return; }