Files
windows-user-space-emulator/src/samples/test-sample/test.cpp
Elias Bachaalany 4a905d562a Update src/samples/test-sample/test.cpp
Co-authored-by: Maurice Heumann <MauriceHeumann@gmail.com>
2025-12-02 15:44:21 -08:00

931 lines
24 KiB
C++

#include <cstdint>
#include <cinttypes>
#include <cstring>
#include <string>
#include <fstream>
#include <thread>
#include <atomic>
#include <vector>
#include <optional>
#include <filesystem>
#include <string_view>
#ifndef NOMINMAX
#define NOMINMAX
#endif
#define WIN32_LEAN_AND_MEAN
#include <intrin.h>
#ifdef __MINGW64__
#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#else
#include <Windows.h>
#include <WinSock2.h>
#include <WS2tcpip.h>
#endif
using namespace std::literals;
// Externally visible and potentially modifiable state
// to trick compiler optimizations
__declspec(dllexport) bool do_the_task = true;
namespace
{
struct tls_struct
{
DWORD num = 1337;
tls_struct()
{
num = GetCurrentThreadId();
}
};
thread_local tls_struct tls_var{};
// getenv is broken right now :(
std::string read_env(const char* env)
{
char buffer[0x1000] = {};
if (!GetEnvironmentVariableA(env, buffer, sizeof(buffer)))
{
return {};
}
return buffer;
}
bool test_threads()
{
constexpr auto thread_count = 5ULL;
std::atomic<uint64_t> counter{0};
std::vector<std::thread> threads{};
threads.reserve(thread_count);
for (auto i = 0ULL; i < thread_count; ++i)
{
threads.emplace_back([&counter] {
++counter;
std::this_thread::yield();
++counter;
// Host scheduling/cpu performance can have impact on emulator scheduling
// std::this_thread::sleep_for(std::chrono::milliseconds(100));
++counter;
});
}
for (auto& t : threads)
{
t.join();
}
return counter == (thread_count * 3ULL);
}
bool test_threads_winapi()
{
struct ctx_t
{
int iterations;
int result;
};
static LPTHREAD_START_ROUTINE thread_proc = [](LPVOID lpParameter) -> DWORD {
ctx_t& c = *static_cast<ctx_t*>(lpParameter);
c.result = 0;
for (int i = 1; i <= c.iterations; i++)
{
++c.result;
}
return 0;
};
constexpr int thread_count = 5;
HANDLE threads[thread_count] = {nullptr};
ctx_t ctxs[thread_count] = {};
for (int i = 0; i < thread_count; i++)
{
ctx_t* ctx = ctxs[i] = new ctx_t{5 * (i + 1), i - 2};
threads[i] = CreateThread(nullptr, 0, thread_proc, ctx, 0, nullptr);
if (!threads[i])
{
return false;
}
}
WaitForMultipleObjects(thread_count, threads, TRUE, INFINITE);
const int expected_results[thread_count] = {5, 10, 15, 20, 25};
for (int i = 0; i < thread_count; i++)
{
if (ctxs[i]->result != expected_results[i])
{
return false;
}
CloseHandle(threads[i]);
delete ctxs[i];
}
return true;
}
bool test_tls()
{
std::atomic_bool kill{false};
std::atomic_uint32_t successes{0};
constexpr uint32_t thread_count = 2;
std::vector<std::thread> ts{};
kill = false;
for (size_t i = 0; i < thread_count; ++i)
{
ts.emplace_back([&] {
while (!kill)
{
std::this_thread::yield();
}
if (tls_var.num == GetCurrentThreadId())
{
++successes;
}
});
}
LoadLibraryA("d3dcompiler_47.dll");
LoadLibraryA("dsound.dll");
LoadLibraryA("comctl32.dll");
/*LoadLibraryA("d3d9.dll");
LoadLibraryA("dxgi.dll");
LoadLibraryA("wlanapi.dll");*/
kill = true;
for (auto& t : ts)
{
if (t.joinable())
{
t.join();
}
}
return successes == thread_count;
}
bool test_env()
{
const auto computername = read_env("COMPUTERNAME");
SetEnvironmentVariableA("BLUB", "LUL");
const auto blub = read_env("BLUB");
return !computername.empty() && blub == "LUL";
}
bool test_file_path_io(const std::filesystem::path& filename)
{
std::error_code ec{};
const auto absolute_file = absolute(filename, ec);
if (ec)
{
puts("Getting absolute path failed");
return false;
}
const auto canonical_file = canonical(filename, ec);
(void)canonical_file;
if (ec)
{
puts("Getting canonical path failed");
return false;
}
return true;
}
bool test_io()
{
const std::filesystem::path filename1 = "a.txt";
const std::filesystem::path filename2 = "A.tXt";
FILE* fp{};
(void)fopen_s(&fp, filename1.string().c_str(), "wb");
if (!fp)
{
puts("Bad file");
return false;
}
const std::string text = "Blub";
(void)fwrite(text.data(), 1, text.size(), fp);
(void)fclose(fp);
if (!test_file_path_io(filename1))
{
return false;
}
std::ifstream t(filename2);
t.seekg(0, std::ios::end);
const size_t size = t.tellg();
std::string buffer(size, ' ');
t.seekg(0);
t.read(buffer.data(), static_cast<std::streamsize>(size));
return text == buffer;
}
bool test_working_directory()
{
std::error_code ec{};
const auto current_dir = std::filesystem::current_path(ec);
if (ec)
{
puts("Failed to get current path");
return false;
}
const std::filesystem::path sys32 = "C:/windows/system32";
current_path(sys32, ec);
if (ec)
{
puts("Failed to update working directory");
return false;
}
const auto new_current_dir = std::filesystem::current_path();
if (sys32 != new_current_dir)
{
puts("Updated directory is wrong!");
return false;
}
if (!std::ifstream("ntdll.dll"))
{
puts("Working directory is not active!");
return false;
}
current_path(current_dir);
return std::filesystem::current_path() == current_dir;
}
bool test_dir_io()
{
size_t count = 0;
for (auto i : std::filesystem::directory_iterator(R"(C:\Windows\System32\)"))
{
++count;
if (count > 30)
{
return true;
}
}
return count > 30;
}
std::optional<std::string> read_registry_string(const HKEY root, const char* path, const char* value)
{
HKEY key{};
if (RegOpenKeyExA(root, path, 0, KEY_READ, &key) != ERROR_SUCCESS)
{
return std::nullopt;
}
char data[MAX_PATH]{};
DWORD length = sizeof(data);
const auto res = RegQueryValueExA(key, value, nullptr, nullptr, reinterpret_cast<uint8_t*>(data), &length);
if (RegCloseKey(key) != ERROR_SUCCESS)
{
return std::nullopt;
}
if (res != ERROR_SUCCESS)
{
return std::nullopt;
}
if (length == 0)
{
return "";
}
return {std::string(data, std::min(static_cast<size_t>(length - 1), sizeof(data)))};
}
std::optional<std::vector<std::string>> get_all_registry_keys(const HKEY root, const char* path)
{
HKEY key{};
if (RegOpenKeyExA(root, path, 0, KEY_READ | KEY_ENUMERATE_SUB_KEYS | KEY_QUERY_VALUE, &key) != ERROR_SUCCESS)
{
return std::nullopt;
}
std::vector<std::string> keys;
std::vector<char> name_buffer(MAX_PATH + 1);
for (DWORD i = 0;; ++i)
{
auto name_buffer_len = static_cast<DWORD>(name_buffer.size());
const LSTATUS status = RegEnumKeyExA(key, i, name_buffer.data(), &name_buffer_len, nullptr, nullptr, nullptr, nullptr);
if (status == ERROR_SUCCESS)
{
keys.emplace_back(name_buffer.data(), name_buffer_len);
}
else if (status == ERROR_NO_MORE_ITEMS)
{
break;
}
else
{
keys.clear();
break;
}
}
if (keys.empty())
{
RegCloseKey(key);
return std::nullopt;
}
if (RegCloseKey(key) != ERROR_SUCCESS)
{
return std::nullopt;
}
return keys;
}
std::optional<std::vector<std::string>> get_all_registry_values(const HKEY root, const char* path)
{
HKEY key{};
if (RegOpenKeyExA(root, path, 0, KEY_READ | KEY_ENUMERATE_SUB_KEYS | KEY_QUERY_VALUE, &key) != ERROR_SUCCESS)
{
return std::nullopt;
}
std::vector<std::string> values;
std::vector<char> name_buffer(MAX_PATH + 1);
for (DWORD i = 0;; ++i)
{
auto name_buffer_len = static_cast<DWORD>(name_buffer.size());
const auto status = RegEnumValueA(key, i, name_buffer.data(), &name_buffer_len, nullptr, nullptr, nullptr, nullptr);
if (status == ERROR_SUCCESS)
{
values.emplace_back(name_buffer.data(), name_buffer_len);
}
else if (status == ERROR_NO_MORE_ITEMS)
{
break;
}
else
{
values.clear();
break;
}
}
if (values.empty())
{
RegCloseKey(key);
return std::nullopt;
}
if (RegCloseKey(key) != ERROR_SUCCESS)
{
return std::nullopt;
}
return values;
}
bool test_registry()
{
// Basic Reading Test
const auto prog_files_dir =
read_registry_string(HKEY_LOCAL_MACHINE, R"(SOFTWARE\Microsoft\Windows\CurrentVersion)", "ProgramFilesDir");
if (!prog_files_dir || *prog_files_dir != "C:\\Program Files")
{
return false;
}
// WOW64 Redirection Test
const auto pst_display = read_registry_string(
HKEY_LOCAL_MACHINE, R"(SOFTWARE\WOW6432Node\Microsoft\Windows NT\CurrentVersion\Time Zones\Pacific Standard Time)", "Display");
if (!pst_display || pst_display->empty())
{
return false;
}
// Key Sub-keys Enumeration Test
const auto subkeys_opt = get_all_registry_keys(HKEY_LOCAL_MACHINE, R"(SOFTWARE\Microsoft\Windows NT\CurrentVersion)");
if (!subkeys_opt)
{
return false;
}
bool found_fonts = false;
for (const auto& key_name : *subkeys_opt)
{
if (key_name == "Fonts")
{
found_fonts = true;
break;
}
}
if (!found_fonts)
{
return false;
}
// Key Values Enumeration Test
const auto values_opt = get_all_registry_values(HKEY_LOCAL_MACHINE, R"(SOFTWARE\Microsoft\Windows NT\CurrentVersion)");
if (!values_opt)
{
return false;
}
bool found_product_name = false;
for (const auto& val_name : *values_opt)
{
if (val_name == "ProductName")
{
found_product_name = true;
break;
}
}
if (!found_product_name)
{
return false;
}
return true;
}
bool test_system_info()
{
char sys_dir[MAX_PATH];
if (GetSystemDirectoryA(sys_dir, sizeof(sys_dir)) == 0)
{
return false;
}
if (strlen(sys_dir) != 19)
{
return false;
}
// TODO: This currently doesn't work.
/*
char username[256];
DWORD username_len = sizeof(username);
if (!GetUserNameA(username, &username_len))
{
return false;
}
if (username_len <= 1)
{
return false;
}
*/
return true;
}
bool test_time_zone()
{
DYNAMIC_TIME_ZONE_INFORMATION current_dtzi = {};
DWORD result = GetDynamicTimeZoneInformation(&current_dtzi);
if (result == TIME_ZONE_ID_INVALID)
{
return false;
}
if (current_dtzi.Bias != -60 || current_dtzi.StandardBias != 0 || current_dtzi.DaylightBias != -60 ||
current_dtzi.DynamicDaylightTimeDisabled != FALSE)
{
return false;
}
if (wcscmp(current_dtzi.StandardName, L"W. Europe Standard Time") != 0 ||
wcscmp(current_dtzi.DaylightName, L"W. Europe Daylight Time") != 0 ||
wcscmp(current_dtzi.TimeZoneKeyName, L"W. Europe Standard Time") != 0)
{
return false;
}
if (current_dtzi.StandardDate.wYear != 0 || current_dtzi.StandardDate.wMonth != 10 || current_dtzi.StandardDate.wDayOfWeek != 0 ||
current_dtzi.StandardDate.wDay != 5 || current_dtzi.StandardDate.wHour != 3 || current_dtzi.StandardDate.wMinute != 0 ||
current_dtzi.StandardDate.wSecond != 0 || current_dtzi.StandardDate.wMilliseconds != 0)
{
return false;
}
if (current_dtzi.DaylightDate.wYear != 0 || current_dtzi.DaylightDate.wMonth != 3 || current_dtzi.DaylightDate.wDayOfWeek != 0 ||
current_dtzi.DaylightDate.wDay != 5 || current_dtzi.DaylightDate.wHour != 2 || current_dtzi.DaylightDate.wMinute != 0 ||
current_dtzi.DaylightDate.wSecond != 0 || current_dtzi.DaylightDate.wMilliseconds != 0)
{
return false;
}
return true;
}
void throw_exception()
{
if (do_the_task)
{
throw std::runtime_error("OK");
}
}
bool test_exceptions()
{
try
{
throw_exception();
return false;
}
catch (const std::exception& e)
{
return e.what() == std::string("OK");
}
}
struct wsa_initializer
{
wsa_initializer()
{
WSADATA wsa_data;
if (WSAStartup(MAKEWORD(2, 2), &wsa_data))
{
throw std::runtime_error("Unable to initialize WSA");
}
}
~wsa_initializer()
{
WSACleanup();
}
};
bool test_socket()
{
wsa_initializer _{};
constexpr std::string_view send_data = "Hello World";
const auto sender = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
const auto receiver = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sender == INVALID_SOCKET || receiver == INVALID_SOCKET)
{
puts("Socket creation failed");
return false;
}
sockaddr_in destination{};
destination.sin_family = AF_INET;
destination.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
destination.sin_port = htons(28970);
if (bind(receiver, reinterpret_cast<sockaddr*>(&destination), sizeof(destination)) == SOCKET_ERROR)
{
puts("Failed to bind socket!");
return false;
}
const auto sent_bytes = sendto(sender, send_data.data(), static_cast<int>(send_data.size()), 0,
reinterpret_cast<sockaddr*>(&destination), sizeof(destination));
if (static_cast<size_t>(sent_bytes) != send_data.size())
{
puts("Failed to send data!");
return false;
}
char buffer[100] = {};
sockaddr_in sender_addr{};
int sender_length = sizeof(sender_addr);
const auto len = recvfrom(receiver, buffer, sizeof(buffer), 0, reinterpret_cast<sockaddr*>(&sender_addr), &sender_length);
if (len != send_data.size())
{
puts("Failed to receive data!");
return false;
}
return send_data == std::string_view(buffer, len);
}
#ifndef __MINGW64__
void throw_access_violation()
{
if (do_the_task)
{
*reinterpret_cast<int*>(1) = 1;
}
}
bool test_access_violation_exception()
{
__try
{
throw_access_violation();
return false;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return GetExceptionCode() == STATUS_ACCESS_VIOLATION;
}
}
bool test_ud2_exception(void* address)
{
__try
{
reinterpret_cast<void (*)()>(address)();
return false;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return GetExceptionCode() == STATUS_ILLEGAL_INSTRUCTION;
}
}
bool test_unhandled_exception()
{
thread_local bool caught{};
caught = false;
auto* old = SetUnhandledExceptionFilter(+[](struct _EXCEPTION_POINTERS* ExceptionInfo) -> LONG {
caught = true;
ExceptionInfo->ContextRecord->Rip += 1;
return EXCEPTION_CONTINUE_EXECUTION; //
});
DebugBreak();
SetUnhandledExceptionFilter(old);
return caught;
}
bool test_illegal_instruction_exception()
{
const auto address = VirtualAlloc(nullptr, 0x1000, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (!address)
{
return false;
}
memcpy(address, "\x0F\x0B", 2); // ud2
const auto res = test_ud2_exception(address);
VirtualFree(address, 0x1000, MEM_RELEASE);
return res;
}
INT32 test_guard_page_seh_filter(LPVOID address, DWORD code, struct _EXCEPTION_POINTERS* ep)
{
// We are only looking for guard page exceptions.
if (code != STATUS_GUARD_PAGE_VIOLATION)
{
return EXCEPTION_CONTINUE_SEARCH;
}
// The number of defined elements in the ExceptionInformation array for
// a guard page violation should be 2.
if (ep->ExceptionRecord->NumberParameters != 2)
{
return EXCEPTION_CONTINUE_SEARCH;
}
// The ExceptionInformation array specifies additional arguments that
// describe the exception.
auto* exception_information = ep->ExceptionRecord->ExceptionInformation;
// If this value is zero, the thread attempted to read the inaccessible
// data. If this value is 1, the thread attempted to write to an
// inaccessible address.
if (exception_information[0] != 1)
{
return EXCEPTION_CONTINUE_SEARCH;
}
// The second array element specifies the virtual address of the
// inaccessible data.
if (exception_information[1] != (ULONG_PTR)address)
{
return EXCEPTION_CONTINUE_SEARCH;
}
return EXCEPTION_EXECUTE_HANDLER;
}
bool test_guard_page_exception()
{
SYSTEM_INFO sys_info;
GetSystemInfo(&sys_info);
// Allocate a guarded memory region with the length of the system page
// size.
auto* addr = static_cast<LPBYTE>(VirtualAlloc(nullptr, sys_info.dwPageSize, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE | PAGE_GUARD));
if (addr == nullptr)
{
puts("Failed to allocate guard page");
return false;
}
bool success = false;
// We want to access some arbitrary offset into the guarded page, to
// ensure that ExceptionInformation correctly contains the virtual
// address of the inaccessible data, not the base address of the region.
constexpr size_t offset = 10;
// Trigger a guard page violation
__try
{
addr[offset] = 255;
}
// If the filter function returns EXCEPTION_CONTINUE_SEARCH, the
// exception contains all of the correct information.
__except (test_guard_page_seh_filter(addr + offset, GetExceptionCode(), GetExceptionInformation()))
{
success = true;
}
// The page guard should be lifted, so no exception should be raised.
__try
{
// The previous write should not have went through, this is probably
// superflous.
if (addr[offset] == 255)
{
success = false;
}
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
puts("Failed to read from page after guard exception!");
success = false;
}
// Free the allocated memory
if (!VirtualFree(addr, 0, MEM_RELEASE))
{
puts("Failed to free allocated region");
success = false;
}
return success;
}
bool test_native_exceptions()
{
return test_access_violation_exception() //
&& test_illegal_instruction_exception() //
&& test_unhandled_exception() //
&& test_guard_page_exception();
}
#endif
bool trap_flag_cleared = false;
constexpr DWORD TRAP_FLAG_MASK = 0x100;
LONG NTAPI single_step_handler(PEXCEPTION_POINTERS exception_info)
{
if (exception_info->ExceptionRecord->ExceptionCode == EXCEPTION_SINGLE_STEP)
{
PCONTEXT context = exception_info->ContextRecord;
trap_flag_cleared = (context->EFlags & TRAP_FLAG_MASK) == 0;
return EXCEPTION_CONTINUE_EXECUTION;
}
return EXCEPTION_CONTINUE_SEARCH;
}
bool test_interrupts()
{
PVOID veh_handle = AddVectoredExceptionHandler(1, single_step_handler);
if (!veh_handle)
return false;
__writeeflags(__readeflags() | TRAP_FLAG_MASK);
#ifdef __MINGW64__
asm("nop");
#else
__nop();
#endif
RemoveVectoredExceptionHandler(veh_handle);
return trap_flag_cleared;
}
void print_time()
{
const auto epoch_time = std::chrono::system_clock::now().time_since_epoch();
printf("Time: %" PRId64 "\n", std::chrono::duration_cast<std::chrono::nanoseconds>(epoch_time).count());
}
bool test_apis()
{
if (VirtualProtect(nullptr, 0, 0, nullptr))
{
return false;
}
wchar_t buffer[0x100];
DWORD size = sizeof(buffer) / 2;
return GetComputerNameExW(ComputerNameNetBIOS, buffer, &size);
}
bool test_apc()
{
int executions = 0;
auto* apc_func = +[](const ULONG_PTR param) {
*reinterpret_cast<int*>(param) += 1; //
};
QueueUserAPC(apc_func, GetCurrentThread(), reinterpret_cast<ULONG_PTR>(&executions));
QueueUserAPC(apc_func, GetCurrentThread(), reinterpret_cast<ULONG_PTR>(&executions));
Sleep(1);
if (executions != 0)
{
return false;
}
SleepEx(1, TRUE);
return executions == 2;
}
}
#define RUN_TEST(func, name) \
{ \
printf("Running test '" name "': "); \
const auto res = func(); \
valid &= res; \
puts(res ? "Success" : "Fail"); \
}
int main(const int argc, const char* argv[])
{
if (argc == 2 && argv[1] == "-time"sv)
{
print_time();
return 0;
}
bool valid = true;
RUN_TEST(test_io, "I/O")
RUN_TEST(test_dir_io, "Dir I/O")
RUN_TEST(test_apis, "APIs")
RUN_TEST(test_working_directory, "Working Directory")
RUN_TEST(test_registry, "Registry")
RUN_TEST(test_system_info, "System Info")
RUN_TEST(test_time_zone, "Time Zone")
RUN_TEST(test_threads, "Threads")
RUN_TEST(test_threads_winapi, "Threads WinAPI")
RUN_TEST(test_env, "Environment")
RUN_TEST(test_exceptions, "Exceptions")
#ifndef __MINGW64__
RUN_TEST(test_native_exceptions, "Native Exceptions")
#endif
if (!getenv("EMULATOR_ICICLE"))
{
RUN_TEST(test_interrupts, "Interrupts")
}
RUN_TEST(test_tls, "TLS")
RUN_TEST(test_socket, "Socket")
RUN_TEST(test_apc, "APC")
return valid ? 0 : 1;
}