Files
windows-user-space-emulator/src/common/utils/time.hpp
2025-08-16 14:55:07 +02:00

116 lines
3.8 KiB
C++

#pragma once
#include <chrono>
#include "../platform/platform.hpp"
#if defined(_MSC_VER)
#include <intrin.h>
#pragma intrinsic(__rdtsc)
#elif defined(__x86_64__) || defined(__i386__) || defined(__amd64__)
#include <x86intrin.h>
#endif
constexpr auto HUNDRED_NANOSECONDS_IN_ONE_SECOND = 10000000LL;
constexpr auto EPOCH_DIFFERENCE_1601_TO_1970_SECONDS = 11644473600LL;
constexpr auto WINDOWS_EPOCH_DIFFERENCE = EPOCH_DIFFERENCE_1601_TO_1970_SECONDS * HUNDRED_NANOSECONDS_IN_ONE_SECOND;
namespace utils
{
struct clock
{
using system_time_point = std::chrono::system_clock::time_point;
using steady_time_point = std::chrono::steady_clock::time_point;
using system_duration = system_time_point::duration;
using steady_duration = steady_time_point::duration;
virtual ~clock() = default;
virtual system_time_point system_now()
{
return std::chrono::system_clock::now();
}
virtual steady_time_point steady_now()
{
return std::chrono::steady_clock::now();
}
// Returns the current timestamp counter value. RDTSC on x86/x64, or just time since epoch for ARM
/// TODO: find better solution for ARM and Figure out better CPU base frequency heuristics
virtual uint64_t timestamp_counter()
{
#if defined(_M_X64) || defined(_M_AMD64) || defined(_M_IX86) || defined(__x86_64__) || defined(__i386__) || defined(__amd64__)
return __rdtsc(); // any x86 system will have this instrinsic
#else
const auto count = std::chrono::high_resolution_clock::now().time_since_epoch().count();
return static_cast<uint64_t>((count * 38LL) / 10LL);
#endif
}
};
class tick_clock : public clock
{
public:
tick_clock(const uint64_t frequency = 1, const system_time_point system_start = {}, const steady_time_point steady_start = {})
: frequency_(frequency),
system_start_(system_start),
steady_start_(steady_start)
{
if (this->frequency_ == 0)
{
throw std::invalid_argument("Frequency can not be 0");
}
}
system_time_point system_now() override
{
return this->now(this->system_start_);
}
steady_time_point steady_now() override
{
return this->now(this->steady_start_);
}
uint64_t timestamp_counter() override
{
return this->ticks();
}
virtual uint64_t ticks() = 0;
uint64_t get_frequency() const
{
return this->frequency_;
}
private:
uint64_t frequency_{1};
system_time_point system_start_{};
steady_time_point steady_start_{};
template <typename TimePoint>
TimePoint now(const TimePoint start)
{
using duration = typename TimePoint::duration;
const auto passed_ticks = this->ticks();
const auto passed_time = duration(passed_ticks * duration::period::den / this->frequency_);
return start + passed_time;
}
};
std::chrono::steady_clock::time_point convert_delay_interval_to_time_point(clock& c, LARGE_INTEGER delay_interval);
KSYSTEM_TIME convert_to_ksystem_time(const std::chrono::system_clock::time_point& tp);
void convert_to_ksystem_time(volatile KSYSTEM_TIME* dest, const std::chrono::system_clock::time_point& tp);
std::chrono::system_clock::time_point convert_from_ksystem_time(const KSYSTEM_TIME& time);
std::chrono::system_clock::time_point convert_from_ksystem_time(const volatile KSYSTEM_TIME& time);
#ifndef OS_WINDOWS
using __time64_t = int64_t;
#endif
LARGE_INTEGER convert_unix_to_windows_time(__time64_t unix_time);
}