Files
windows-user-space-emulator/src/windows-emulator/syscall_utils.hpp
2024-10-25 19:27:19 +02:00

210 lines
5.4 KiB
C++

#pragma once
#include "windows_emulator.hpp"
struct syscall_context
{
windows_emulator& win_emu;
x64_emulator& emu;
process_context& proc;
mutable bool write_status{true};
mutable bool retrigger_syscall{false};
};
inline uint64_t get_syscall_argument(x64_emulator& emu, const size_t index)
{
switch (index)
{
case 0:
return emu.reg(x64_register::r10);
case 1:
return emu.reg(x64_register::rdx);
case 2:
return emu.reg(x64_register::r8);
case 3:
return emu.reg(x64_register::r9);
default:
return emu.read_stack(index + 1);
}
}
inline bool is_uppercase(const char character)
{
return toupper(character) == character;
}
inline bool is_syscall(const std::string_view name)
{
return name.starts_with("Nt") && name.size() > 3 && is_uppercase(name[2]);
}
inline std::vector<std::string> find_syscalls(const exported_symbols& exports)
{
// Makes use of the fact that order of Nt* function addresses
// is equal to the order of syscall IDs.
// So first Nt* function is the first syscall with ID 0
std::map<uint64_t, size_t> reference_count{};
std::map<uint64_t, std::string> ordered_syscalls{};
for (const auto& symbol : exports)
{
if (is_syscall(symbol.name))
{
++reference_count[symbol.address];
ordered_syscalls[symbol.address] = symbol.name;
}
}
std::vector<std::string> syscalls{};
syscalls.reserve(ordered_syscalls.size());
for (auto& syscall : ordered_syscalls)
{
if (reference_count[syscall.first] == 1)
{
syscalls.push_back(std::move(syscall.second));
}
}
return syscalls;
}
inline void map_syscalls(std::map<uint64_t, syscall_handler_entry>& handlers,
const std::vector<std::string>& syscalls, const uint64_t base_index)
{
for (size_t i = 0; i < syscalls.size(); ++i)
{
const auto& syscall = syscalls[i];
auto& entry = handlers[base_index + i];
entry.name = syscall;
entry.handler = nullptr;
}
}
template <typename T>
requires(std::is_integral_v<T> || std::is_enum_v<T>)
T resolve_argument(x64_emulator& emu, const size_t index)
{
const auto arg = get_syscall_argument(emu, index);
return static_cast<T>(arg);
}
template <typename T>
requires(std::is_same_v<std::remove_cvref_t<T>, handle>)
handle resolve_argument(x64_emulator& emu, const size_t index)
{
handle h{};
h.bits = resolve_argument<uint64_t>(emu, index);
return h;
}
template <typename T>
requires(std::is_same_v<T, emulator_object<typename T::value_type>>)
T resolve_argument(x64_emulator& emu, const size_t index)
{
const auto arg = get_syscall_argument(emu, index);
return T(emu, arg);
}
template <typename T>
T resolve_indexed_argument(x64_emulator& emu, size_t& index)
{
return resolve_argument<T>(emu, index++);
}
inline void write_status(const syscall_context& c, const NTSTATUS status, const uint64_t initial_ip)
{
if (c.write_status && !c.retrigger_syscall)
{
c.emu.reg<uint64_t>(x64_register::rax, static_cast<uint64_t>(status));
}
const auto new_ip = c.emu.read_instruction_pointer();
if (initial_ip != new_ip || c.retrigger_syscall)
{
c.emu.reg(x64_register::rip, new_ip - 2);
}
}
inline void forward_syscall(const syscall_context& c, NTSTATUS (*handler)())
{
const auto ip = c.emu.read_instruction_pointer();
const auto ret = handler();
write_status(c, ret, ip);
}
template <typename... Args>
void forward_syscall(const syscall_context& c, NTSTATUS (*handler)(const syscall_context&, Args...))
{
const auto ip = c.emu.read_instruction_pointer();
size_t index = 0;
std::tuple<const syscall_context&, Args...> func_args
{
c,
resolve_indexed_argument<std::remove_cv_t<std::remove_reference_t<Args>>>(c.emu, index)...
};
const auto ret = std::apply(handler, std::move(func_args));
write_status(c, ret, ip);
}
template <auto Handler>
syscall_handler make_syscall_handler()
{
return +[](const syscall_context& c)
{
forward_syscall(c, Handler);
};
}
template <typename T>
void write_attribute(emulator& emu, const PS_ATTRIBUTE& attribute, const T& value)
{
if (attribute.ReturnLength)
{
emulator_object<SIZE_T>{emu, attribute.ReturnLength}.write(sizeof(T));
}
if (attribute.Size >= sizeof(T))
{
emulator_object<T>{emu, attribute.Value}.write(value);
}
}
inline std::chrono::steady_clock::time_point convert_delay_interval_to_time_point(const LARGE_INTEGER delay_interval)
{
constexpr auto HUNDRED_NANOSECONDS_IN_ONE_SECOND = 10000000LL;
constexpr auto EPOCH_DIFFERENCE_1601_TO_1970_SECONDS = 11644473600LL;
if (delay_interval.QuadPart <= 0)
{
const auto relative_time = -delay_interval.QuadPart;
const auto relative_ticks_in_ms = relative_time / 10;
const auto relative_fraction_ns = (relative_time % 10) * 100;
const auto relative_duration = std::chrono::microseconds(relative_ticks_in_ms) +
std::chrono::nanoseconds(relative_fraction_ns);
return std::chrono::steady_clock::now() + relative_duration;
}
const auto delay_seconds_since_1601 = delay_interval.QuadPart / HUNDRED_NANOSECONDS_IN_ONE_SECOND;
const auto delay_fraction_ns = (delay_interval.QuadPart % HUNDRED_NANOSECONDS_IN_ONE_SECOND) * 100;
const auto delay_seconds_since_1970 = delay_seconds_since_1601 - EPOCH_DIFFERENCE_1601_TO_1970_SECONDS;
const auto target_time =
std::chrono::system_clock::from_time_t(delay_seconds_since_1970) +
std::chrono::nanoseconds(delay_fraction_ns);
const auto now_system = std::chrono::system_clock::now();
const auto duration_until_target = std::chrono::duration_cast<
std::chrono::microseconds>(target_time - now_system);
return std::chrono::steady_clock::now() + duration_until_target;
}