Files
windows-user-space-emulator/src/windows-emulator/emulator_thread.cpp

476 lines
17 KiB
C++

#include "std_include.hpp"
#include "emulator_thread.hpp"
#include "cpu_context.hpp"
#include "process_context.hpp"
namespace
{
void setup_wow64_fs_segment(memory_manager& memory, uint64_t teb32_addr)
{
const uint64_t base = teb32_addr;
const uint32_t limit = 0xFFF; // 4KB - size of TEB32 (matching Windows)
// Build the GDT descriptor matching Windows format exactly
// Format: | Base[31:24] | G|D|L|AVL | Limit[19:16] | P|DPL|S|Type | Base[23:16] | Base[15:0] | Limit[15:0] |
uint64_t descriptor = 0;
descriptor |= (limit & 0xFFFF); // Limit[15:0]
descriptor |= ((base & 0xFFFF) << 16); // Base[15:0]
descriptor |= ((base & 0xFF0000) << 16); // Base[23:16]
descriptor |= (0xF3ULL << 40); // P=1, DPL=3, S=1, Type=3 (Data RW Accessed)
descriptor |= (static_cast<uint64_t>((limit & 0xF0000) >> 16) << 48); // Limit[19:16]
descriptor |= (0x40ULL << 52); // G=0 (byte), D=1 (32-bit), L=0, AVL=0
descriptor |= ((base & 0xFF000000) << 32); // Base[31:24]
// Write the updated descriptor to GDT index 10 (selector 0x53)
constexpr uint64_t fs_gdt_offset = GDT_ADDR + 10 * sizeof(uint64_t);
memory.write_memory(fs_gdt_offset, &descriptor, sizeof(descriptor));
}
template <typename T>
emulator_object<T> allocate_object_on_stack(x86_64_emulator& emu)
{
const auto old_sp = emu.reg(x86_register::rsp);
const auto new_sp = align_down(old_sp - sizeof(T), std::max(alignof(T), alignof(x86_64_emulator::pointer_type)));
emu.reg(x86_register::rsp, new_sp);
return {emu, new_sp};
}
void unalign_stack(x86_64_emulator& emu)
{
auto sp = emu.reg(x86_register::rsp);
sp = align_down(sp - 0x10, 0x10) + 8;
emu.reg(x86_register::rsp, sp);
}
void setup_stack(x86_64_emulator& emu, const process_context& context, const uint64_t stack_base, const size_t stack_size)
{
if (!context.is_wow64_process)
{
const uint64_t stack_end = stack_base + stack_size;
emu.reg(x86_register::rsp, stack_end);
}
else
{
const uint64_t stack_end = stack_base + stack_size - sizeof(WOW64_CPURESERVED) - 0x548;
emu.reg(x86_register::rsp, stack_end);
}
}
bool is_object_signaled(process_context& c, const handle h, const uint32_t current_thread_id)
{
const auto type = h.value.type;
switch (type)
{
default:
break;
case handle_types::event: {
if (h.value.is_pseudo)
{
return true;
}
auto* e = c.events.get(h);
if (e)
{
return e->is_signaled();
}
break;
}
case handle_types::mutant: {
auto* e = c.mutants.get(h);
return !e || e->try_lock(current_thread_id);
}
case handle_types::timer: {
return true; // TODO
}
case handle_types::semaphore: {
auto* s = c.semaphores.get(h);
if (s)
{
return s->try_lock();
}
break;
}
case handle_types::thread: {
const auto* t = c.threads.get(h);
if (t)
{
return t->is_terminated();
}
break;
}
}
throw std::runtime_error("Bad object: " + std::to_string(h.value.type));
}
}
emulator_thread::emulator_thread(memory_manager& memory, const process_context& context, const uint64_t start_address,
const uint64_t argument, const uint64_t stack_size, const bool suspended, const uint32_t id)
: memory_ptr(&memory),
// stack_size(page_align_up(std::max(stack_size, static_cast<uint64_t>(STACK_SIZE)))),
start_address(start_address),
argument(argument),
id(id),
suspended(suspended),
last_registers(context.default_register_set)
{
// native 64-bit
if (!context.is_wow64_process)
{
this->stack_size = page_align_up(std::max(stack_size, static_cast<uint64_t>(STACK_SIZE)));
this->stack_base = memory.allocate_memory(static_cast<size_t>(this->stack_size), memory_permission::read_write);
this->gs_segment = emulator_allocator{
memory,
memory.allocate_memory(GS_SEGMENT_SIZE, memory_permission::read_write),
GS_SEGMENT_SIZE,
};
this->teb64 = this->gs_segment->reserve<TEB64>();
this->teb64->access([&](TEB64& teb_obj) {
// Skips GetCurrentNlsCache
// This hack can be removed once this is fixed:
// https://github.com/momo5502/emulator/issues/128
reinterpret_cast<uint8_t*>(&teb_obj)[0x179C] = 1;
teb_obj.ClientId.UniqueProcess = 1ul;
teb_obj.ClientId.UniqueThread = static_cast<uint64_t>(this->id);
teb_obj.NtTib.StackLimit = this->stack_base;
teb_obj.NtTib.StackBase = this->stack_base + this->stack_size;
teb_obj.NtTib.Self = this->teb64->value();
teb_obj.CurrentLocale = 0x409;
teb_obj.ProcessEnvironmentBlock = context.peb64.value();
});
return;
}
// Default native size of wow64 is 256KB
this->stack_size = WOW64_NATIVE_STACK_SIZE;
this->wow64_stack_size = page_align_up(std::max(stack_size, static_cast<uint64_t>(STACK_SIZE)));
// Set the default memory allocation address to the specified 32-bit address
memory.set_default_allocation_address(DEFAULT_ALLOCATION_ADDRESS_32BIT);
// Calculate required GS segment size for WOW64 (64-bit TEB + 32-bit TEB)
constexpr uint64_t wow_teb_offset = 0x2000;
constexpr size_t teb64_size = sizeof(TEB64);
constexpr size_t teb32_size = sizeof(TEB32); // 4120 bytes
const uint64_t required_gs_size = teb64_size + wow_teb_offset + teb32_size; // Need space for both TEBs
const auto actual_gs_size =
static_cast<size_t>((required_gs_size > GS_SEGMENT_SIZE) ? page_align_up(required_gs_size) : GS_SEGMENT_SIZE);
// Allocate GS segment to hold both TEB32 and TEB64 for WOW64 process
this->gs_segment = emulator_allocator{
memory,
memory.allocate_memory(actual_gs_size, memory_permission::read_write),
actual_gs_size,
};
// Reserve and initialize 64-bit TEB first
this->teb64 = this->gs_segment->reserve<TEB64>();
// Allocate memory for native stack + WOW64_CPURESERVED structure
this->stack_base = memory.allocate_memory(WOW64_NATIVE_STACK_SIZE, memory_permission::read_write);
if (this->stack_base == 0)
{
throw std::runtime_error("Failed to allocate native stack + WOW64_CPURESERVED memory region");
return;
}
uint64_t wow64_cpureserved_base = this->stack_base + this->stack_size - sizeof(WOW64_CPURESERVED);
// Initialize 64-bit TEB first
this->teb64->access([&](TEB64& teb_obj) {
// Skips GetCurrentNlsCache
// This hack can be removed once this is fixed:
// https://github.com/momo5502/emulator/issues/128
reinterpret_cast<uint8_t*>(&teb_obj)[0x179C] = 1;
teb_obj.ClientId.UniqueProcess = 1ul;
teb_obj.ClientId.UniqueThread = static_cast<uint64_t>(this->id);
// Native 64-bit stack
teb_obj.NtTib.StackLimit = this->stack_base;
teb_obj.NtTib.StackBase = wow64_cpureserved_base;
teb_obj.NtTib.Self = this->teb64->value();
teb_obj.CurrentLocale = 0x409;
teb_obj.ProcessEnvironmentBlock = context.peb64.value();
teb_obj.StaticUnicodeString.MaximumLength = sizeof(teb_obj.StaticUnicodeBuffer);
teb_obj.StaticUnicodeString.Buffer = this->teb64->value() + offsetof(TEB64, StaticUnicodeBuffer);
// Set WowTebOffset to point to 32-bit TEB offset
teb_obj.WowTebOffset = static_cast<int32_t>(wow_teb_offset); // 0x2000
// Set TLS slot [1] to point to WOW64_CPURESERVED structure
teb_obj.TlsSlots.arr[1 /* WOW64_TLS_CPURESERVED */] = wow64_cpureserved_base;
// Note: TLS slot [10] (WOW64_INFO_PTR) will be set by wow64.dll during initialization
});
// Allocate dynamic 32-bit stack for WOW64 thread
this->wow64_stack_base = memory.allocate_memory(static_cast<size_t>(this->wow64_stack_size.value()), memory_permission::read_write);
// Create and initialize 32-bit TEB for WOW64
// According to WinDbg: 32-bit TEB = 64-bit TEB + WowTebOffset (0x2000)
const uint64_t teb64_addr = this->teb64->value(); // Base address of the 64-bit TEB.
const uint64_t teb32_addr = teb64_addr + wow_teb_offset;
uint64_t teb32_peb = 0;
uint64_t nttib32_stack_base = this->wow64_stack_base.value() + this->wow64_stack_size.value();
uint64_t nttib32_stack_limit = this->wow64_stack_base.value();
// Create 32-bit TEB at the calculated offset within GS segment
// We need to create it as an emulator_object at a specific address
this->teb32 = emulator_object<TEB32>{memory, teb32_addr};
// Initialize 32-bit TEB
this->teb32->access([&](TEB32& teb32_obj) {
// Set NT_TIB32 fields
teb32_obj.NtTib.Self = static_cast<uint32_t>(teb32_addr); // Self pointer to 32-bit TEB
teb32_obj.NtTib.StackBase = static_cast<uint32_t>(nttib32_stack_base); // Top of 32-bit stack (High address)
teb32_obj.NtTib.StackLimit = static_cast<uint32_t>(nttib32_stack_limit); // Bottom of 32-bit stack (Low address)
teb32_obj.NtTib.ExceptionList = static_cast<uint32_t>(0xffffffff); // Must be 0xffffffff on 32-bit TEB
teb32_obj.NtTib.SubSystemTib = static_cast<uint32_t>(0x0);
teb32_obj.NtTib.FiberData = static_cast<uint32_t>(0x1e00);
teb32_obj.NtTib.ArbitraryUserPointer = static_cast<uint32_t>(0x0);
// Set ClientId for 32-bit TEB
teb32_obj.ClientId.UniqueProcess = 1;
teb32_obj.ClientId.UniqueThread = this->id;
// Set 32-bit PEB pointer
if (context.peb32.has_value())
{
teb32_obj.ProcessEnvironmentBlock = static_cast<uint32_t>(context.peb32->value());
teb32_peb = teb32_obj.ProcessEnvironmentBlock;
}
else
{
// Fallback: WOW64 initialization will set this
teb32_obj.ProcessEnvironmentBlock = 0;
}
teb32_obj.WowTebOffset = -0x2000;
// Note: CurrentLocale and other fields will be initialized by WOW64 runtime
});
// CRITICAL: Setup FS segment (0x53) to point to 32-bit TEB for accurate WOW64 emulation
// This mimics what Windows kernel does during NtCreateUserProcess for WOW64 processes
// Without this, FS:0 won't correctly access the 32-bit TEB
//
// NOTE: We cannot use set_segment_base() here because that sets the FS_BASE MSR
// which is for 64-bit flat addressing. 32-bit code uses actual GDT-based segmentation
// with selector 0x53, so we must modify the GDT entry directly.
setup_wow64_fs_segment(memory, teb32_addr);
// Use the allocator to reserve memory for CONTEXT64
this->wow64_cpu_reserved = emulator_object<WOW64_CPURESERVED>{memory, wow64_cpureserved_base};
// Initialize with a WOW64_CONTEXT that represents the WOW64 initial state
this->wow64_cpu_reserved->access([&](WOW64_CPURESERVED& ctx) {
memset(&ctx, 0, sizeof(ctx));
ctx.Flags = 0;
ctx.MachineType = IMAGE_FILE_MACHINE_I386;
// Set context flags for all state
ctx.Context.ContextFlags = CONTEXT32_ALL;
// Debug registers - all zero for initial state
ctx.Context.Dr0 = 0;
ctx.Context.Dr1 = 0;
ctx.Context.Dr2 = 0;
ctx.Context.Dr3 = 0;
ctx.Context.Dr6 = 0;
ctx.Context.Dr7 = 0;
// Segment registers - WOW64 values
ctx.Context.SegGs = 0x2b; // Standard 32-bit data segment
ctx.Context.SegFs = 0x53; // WOW64 FS selector pointing to TEB32
ctx.Context.SegEs = 0x2b; // Standard 32-bit data segment
ctx.Context.SegDs = 0x2b; // Standard 32-bit data segment
ctx.Context.SegCs = 0x23; // Standard 32-bit code segment
ctx.Context.SegSs = 0x2b; // Standard 32-bit stack segment
// General purpose registers - zero-extended 32-bit values
ctx.Context.Edi = 0;
ctx.Context.Esi = 0;
ctx.Context.Edx = 0;
ctx.Context.Ecx = 0;
ctx.Context.Ebp = 0;
// EBX - 32-bit PEB address
ctx.Context.Ebx = static_cast<uint32_t>(teb32_peb);
// EAX - thread entry point
ctx.Context.Eax = static_cast<uint32_t>(this->start_address);
// ESP - Fixed stack pointer at top of allocated stack
ctx.Context.Esp = static_cast<uint32_t>(nttib32_stack_base - 0x10); // Leaving 0x10 bytes at top as per WinDbg
// EIP - will be set to RtlUserThreadStart during setup_registers()
ctx.Context.Eip = 0;
// EFlags - standard initial flags
ctx.Context.EFlags = 0x202; // IF (Interrupt Flag) set
// Extended state - initialize to zero
memset(&ctx.Context.FloatSave, 0, sizeof(ctx.Context.FloatSave));
memset(&ctx.Context.ExtendedRegisters, 0, sizeof(ctx.Context.ExtendedRegisters));
});
}
void emulator_thread::mark_as_ready(const NTSTATUS status)
{
this->pending_status = status;
this->await_time = {};
this->await_objects = {};
// TODO: Find out if this is correct
if (this->waiting_for_alert)
{
this->alerted = false;
}
this->waiting_for_alert = false;
}
bool emulator_thread::is_terminated() const
{
return this->exit_status.has_value();
}
bool emulator_thread::is_thread_ready(process_context& process, utils::clock& clock)
{
if (this->is_terminated() || this->suspended > 0)
{
return false;
}
if (this->waiting_for_alert)
{
if (this->alerted)
{
this->mark_as_ready(STATUS_ALERTED);
return true;
}
if (this->is_await_time_over(clock))
{
this->mark_as_ready(STATUS_TIMEOUT);
return true;
}
return false;
}
if (!this->await_objects.empty())
{
bool all_signaled = true;
for (uint32_t i = 0; i < this->await_objects.size(); ++i)
{
const auto& obj = this->await_objects[i];
const auto signaled = is_object_signaled(process, obj, this->id);
all_signaled &= signaled;
if (signaled && this->await_any)
{
this->mark_as_ready(STATUS_WAIT_0 + i);
return true;
}
}
if (!this->await_any && all_signaled)
{
this->mark_as_ready(STATUS_SUCCESS);
return true;
}
if (this->is_await_time_over(clock))
{
this->mark_as_ready(STATUS_TIMEOUT);
return true;
}
return false;
}
if (this->await_time.has_value())
{
if (this->is_await_time_over(clock))
{
this->mark_as_ready(STATUS_SUCCESS);
return true;
}
return false;
}
return true;
}
void emulator_thread::setup_registers(x86_64_emulator& emu, const process_context& context) const
{
if (!this->gs_segment)
{
throw std::runtime_error("Missing GS segment");
}
// Handle WOW64 process setup
if (context.is_wow64_process && this->wow64_cpu_reserved.has_value())
{
// Set up WOW64 context with proper EIP
this->wow64_cpu_reserved->access([&](WOW64_CPURESERVED& ctx) {
// Set EIP to RtlUserThreadStart in 32-bit ntdll if available
if (context.rtl_user_thread_start32.has_value())
{
ctx.Context.Eip = static_cast<uint32_t>(context.rtl_user_thread_start32.value());
}
});
// For WOW64, also set FS segment base to point to 32-bit TEB
// Windows kernel sets both GDT descriptor and FS_BASE MSR during thread creation
if (this->teb32.has_value())
{
emu.set_segment_base(x86_register::fs, this->teb32->value());
}
}
// Native 64-bit process setup
setup_stack(emu, context, this->stack_base, static_cast<size_t>(this->stack_size));
emu.set_segment_base(x86_register::gs, this->gs_segment->get_base());
CONTEXT64 ctx{};
ctx.ContextFlags = CONTEXT64_ALL;
unalign_stack(emu);
cpu_context::save(emu, ctx);
ctx.Rip = context.rtl_user_thread_start;
ctx.Rcx = this->start_address;
ctx.Rdx = this->argument;
const auto ctx_obj = allocate_object_on_stack<CONTEXT64>(emu);
ctx_obj.write(ctx);
unalign_stack(emu);
emu.reg(x86_register::rcx, ctx_obj.value());
emu.reg(x86_register::rdx, context.ntdll_image_base);
emu.reg(x86_register::rip, context.ldr_initialize_thunk);
}