8 Commits
tp5 ... 1.0.0

15 changed files with 713 additions and 165 deletions

View File

@@ -1,6 +1,6 @@
# Jeu Snake 2025
[![en](https://img.shields.io/badge/lang-en-red.svg)](https://git.esiee.fr/frequela/snake2025/-/blob/tp5/README.md)
[![fr](https://img.shields.io/badge/lang-fr-green.svg)](https://git.esiee.fr/frequela/snake2025/-/blob/tp5/README-fr.md)
[![en](https://img.shields.io/badge/lang-en-red.svg)](https://git.esiee.fr/frequela/snake2025/-/blob/tp6/README.md)
[![fr](https://img.shields.io/badge/lang-fr-green.svg)](https://git.esiee.fr/frequela/snake2025/-/blob/tp6/README-fr.md)
Ce projet est un jeu snake basé sur une grille utilisant la bibliothèque graphique MLV. La grille représente un plateau de jeu avec des murs, des espaces vides, des fruits et un serpent. Le programme affiche la grille dans une fenêtre graphique et attend une interaction de l'utilisateur.
@@ -10,6 +10,9 @@ Ce projet est un jeu snake basé sur une grille utilisant la bibliothèque graph
- Utilise la bibliothèque graphique MLV pour le rendu graphique.
- Assure que les blocs en dehors de la grille sont affichés en noir.
- Permet à l'utilisateur de quitter le programme en appuyant sur la touche ESC.
- Implémente un serpent dynamique utilisant une liste chaînée pour ses segments.
- Gère le mouvement du serpent en mettant à jour la position de la tête et en déplaçant tous les segments en conséquence.
- Permet au serpent de grandir lorsqu'il mange des fruits.
## Représentation de la Grille
@@ -19,6 +22,16 @@ Ce projet est un jeu snake basé sur une grille utilisant la bibliothèque graph
- `'f'` pour les fruits.
- `'s'` pour le serpent.
## Représentation du Serpent
- Le serpent est implémenté comme une liste chaînée de segments (`Position`), où :
- Chaque segment a des coordonnées `x` et `y`.
- Le pointeur `next` relie le segment suivant dans le serpent.
- Le mouvement du serpent est géré en :
- Ajoutant une nouvelle tête en fonction de la direction actuelle.
- Déplaçant tous les segments pour suivre la tête.
- Supprimant la queue sauf si le serpent mange un fruit.
## Dépendances
- GCC (GNU Compiler Collection)
@@ -52,7 +65,24 @@ Cela compilera les fichiers sources et créera un exécutable nommé `game` dans
./game
```
2. Une fenêtre s'ouvrira affichant la grille. Les blocs en dehors de la grille apparaîtront en noir. Appuyez sur la touche ESC pour fermer la fenêtre.
2. Une fenêtre s'ouvrira affichant la grille. Les blocs en dehors de la grille apparaîtront en noir. Utilisez les flèches directionnelles pour contrôler le serpent. Appuyez sur la touche ESC pour fermer la fenêtre.
## Logique du Jeu
- **Mouvement du Serpent** :
- Le serpent se déplace dans la direction actuelle, en mettant à jour la position de sa tête et en déplaçant tous les segments.
- Si le serpent mange un fruit, il grandit en ajoutant un nouveau segment sans supprimer la queue.
- Si le serpent entre en collision avec un mur ou lui-même, le jeu se termine.
- **Mise à Jour de la Grille** :
- La grille est mise à jour pour refléter la nouvelle position du serpent après chaque mouvement.
- Les fruits sont supprimés de la grille lorsqu'ils sont mangés par le serpent.
- **Condition de Victoire** :
- Le joueur gagne lorsque tous les fruits sur la grille sont collectés.
- **Condition de Défaite** :
- Le jeu se termine si le serpent entre en collision avec un mur ou lui-même.
## Nettoyage

View File

@@ -1,6 +1,6 @@
# Snake 2025 Game
[![en](https://img.shields.io/badge/lang-en-red.svg)](https://git.esiee.fr/frequela/snake2025/-/blob/tp5/README.md)
[![fr](https://img.shields.io/badge/lang-fr-green.svg)](https://git.esiee.fr/frequela/snake2025/-/blob/tp5/README-fr.md)
[![en](https://img.shields.io/badge/lang-en-red.svg)](https://git.esiee.fr/frequela/snake2025/-/blob/tp6/README.md)
[![fr](https://img.shields.io/badge/lang-fr-green.svg)](https://git.esiee.fr/frequela/snake2025/-/blob/tp6/README-fr.md)
This project is a simple grid-based snake game using the MLV graphics library. The grid represents a game board with walls, empty spaces, fruits, and a snake. The program displays the grid in a graphical window and waits for user interaction.
@@ -10,6 +10,9 @@ This project is a simple grid-based snake game using the MLV graphics library. T
- Uses the MLV graphics library for graphical rendering.
- Ensures that blocks outside the grid are displayed as black.
- Allows the user to quit the program by pressing the ESC key.
- Implements a dynamic snake using a linked list for its segments.
- Handles snake movement by updating the head position and shifting all segments accordingly.
- Supports snake growth when eating fruits.
## Grid Representation
@@ -19,6 +22,16 @@ This project is a simple grid-based snake game using the MLV graphics library. T
- `'f'` for fruits.
- `'s'` for the snake.
## Snake Representation
- The snake is implemented as a linked list of segments (`Position` structures), where:
- Each segment has `x` and `y` coordinates.
- The `next` pointer links to the next segment in the snake.
- The snake's movement is handled by:
- Adding a new head based on the current direction.
- Shifting all segments to follow the head.
- Removing the tail unless the snake eats a fruit.
## Dependencies
- GCC (GNU Compiler Collection)
@@ -52,7 +65,24 @@ This will compile the source files and create an executable named `game` in the
./game
```
2. A window will open displaying the grid. Blocks outside the grid will appear black. Press the ESC key to close the window.
2. A window will open displaying the grid. Blocks outside the grid will appear black. Use the arrow keys to control the snake. Press the ESC key to close the window.
## Game Logic
- **Snake Movement**:
- The snake moves in the current direction, updating its head position and shifting all segments.
- If the snake eats a fruit, it grows by adding a new segment without removing the tail.
- If the snake collides with a wall or itself, the game ends.
- **Grid Updates**:
- The grid is updated to reflect the snake's new position after each move.
- Fruits are removed from the grid when eaten by the snake.
- **Winning Condition**:
- The player wins when all fruits on the grid are collected.
- **Losing Condition**:
- The game ends if the snake collides with a wall or itself.
## Cleaning Up

BIN
assets/boost.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

BIN
assets/fruit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 311 KiB

BIN
assets/grass.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 683 KiB

BIN
assets/wall.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.2 KiB

333
game.c
View File

@@ -7,7 +7,7 @@
#include "grid.h"
#include "snake.h"
#define DIFFICULTY 6
#define BASE_SPEED 6
void print_help()
{
@@ -27,10 +27,20 @@ int main(int argc, char *argv[])
size_t size_buf = 0;
int nbl, nbc, i;
int opt, option_index = 0;
int loop_count = 0, nb_fruit = 0;
int loop_count = 0, nb_fruit = 0, total_fruits = 0;
char *input_file = NULL;
int width = 640, height = 480;
MLV_Keyboard_button touche = MLV_KEYBOARD_NONE;
int initial_size = 0;
int current_level = 1;
int global_score = 0;
int previous_score = 0;
int speed = BASE_SPEED;
int boosts = 0;
int boost_spawn_timer = 0;
int boost_spawn_interval = 0;
int boost_duration = 0;
const int boost_duration_frames = 5 * 24;
Grid *g;
@@ -39,17 +49,6 @@ int main(int argc, char *argv[])
{"input", required_argument, 0, 'i'},
{0, 0, 0, 0}};
Snake snake;
snake.pos[0].x = 1;
snake.pos[0].y = 3;
snake.pos[1].x = 1;
snake.pos[1].y = 2;
snake.pos[2].x = 1;
snake.pos[2].y = 1;
snake.pos[3].x = 1;
snake.pos[3].y = 0;
snake.dir = RIGHT;
while ((opt = getopt_long(argc, argv, "hi:", long_options, &option_index)) != -1)
{
switch (opt)
@@ -66,144 +65,230 @@ int main(int argc, char *argv[])
}
}
if (input_file == NULL)
while (1)
{
input_file = "levels/default";
}
stream = fopen(input_file, "r");
if (!stream)
{
fprintf(stderr, "Error: unable to open file\n");
exit(EXIT_FAILURE);
}
Snake *snake = new_snake();
nbl = count_nb_lines(stream);
rewind(stream);
nbc = getline(&buf, &size_buf, stream);
if (nbc == -1)
{
fprintf(stderr, "Error: malformed file\n");
exit(EXIT_FAILURE);
}
nbc--;
previous_score = global_score;
g = allocate_grid(nbl, nbc);
copy(buf, g->grid[0]);
for (i = 1; i < nbl; i++)
{
int size_tmp = getline(&buf, &size_buf, stream);
if (size_tmp != nbc + 1)
if (input_file == NULL)
{
fprintf(stderr, "Error: inconsistent line length\n");
char level_file[256];
snprintf(level_file, sizeof(level_file), "levels/level%d", current_level);
input_file = level_file;
}
stream = fopen(input_file, "r");
if (!stream)
{
fprintf(stderr, "Error: unable to open file for level %d\n", current_level);
exit(EXIT_FAILURE);
}
nbl = count_nb_lines(stream);
rewind(stream);
nbc = getline(&buf, &size_buf, stream);
if (nbc == -1)
{
fprintf(stderr, "Error: malformed file\n");
free(buf);
fclose(stream);
exit(EXIT_FAILURE);
}
copy(buf, g->grid[i]);
}
nbc--;
rewind(stream);
nb_fruit = count_fruits(stream, g);
if (nb_fruit == 0)
{
fprintf(stderr, "Error: no fruits in the grid\n");
free(buf);
fclose(stream);
exit(EXIT_FAILURE);
}
if (nb_fruit == -1)
{
fprintf(stderr, "Error: unable to count fruits\n");
free(buf);
fclose(stream);
exit(EXIT_FAILURE);
}
g = allocate_grid(nbl, nbc);
free(buf);
fclose(stream);
place_snake(g, &snake);
MLV_create_window("SNAKE", "3R-IN1B", width, height);
MLV_change_frame_rate(24);
while (
MLV_get_event(
&touche, NULL, NULL,
NULL, NULL,
NULL, NULL, NULL,
NULL) == MLV_NONE ||
touche != MLV_KEYBOARD_ESCAPE)
{
Element result;
MLV_clear_window(MLV_COLOR_BLACK);
loop_count = (loop_count + 1) % DIFFICULTY;
if (loop_count == 0)
copy(buf, g->grid[0]);
for (i = 1; i < nbl; i++)
{
result = move_snake(&snake, g);
if (result == WALL || result == SNAKE)
int size_tmp = getline(&buf, &size_buf, stream);
if (size_tmp != nbc + 1)
{
if (result == WALL)
{
MLV_draw_text(width / 2 - 75, height / 2, "Game Over! You hit a wall.", MLV_COLOR_RED);
}
else if (result == SNAKE)
{
MLV_draw_text(width / 2 - 75, height / 2, "Game Over! You hit yourself.", MLV_COLOR_RED);
}
MLV_actualise_window();
MLV_wait_seconds(3);
break;
fprintf(stderr, "Error: inconsistent line length\n");
free(buf);
free_grid(g);
fclose(stream);
exit(EXIT_FAILURE);
}
else if (result == FRUIT)
copy(buf, g->grid[i]);
}
rewind(stream);
nb_fruit = count_fruits(stream, g);
total_fruits = nb_fruit;
if (nb_fruit == 0)
{
fprintf(stderr, "Error: no fruits in the grid\n");
free(buf);
free_grid(g);
fclose(stream);
exit(EXIT_FAILURE);
}
if (nb_fruit == -1)
{
fprintf(stderr, "Error: unable to count fruits\n");
free(buf);
free_grid(g);
fclose(stream);
exit(EXIT_FAILURE);
}
free(buf);
buf = NULL;
fclose(stream);
read_snake_from_grid(g, snake);
initial_size = snake->size;
MLV_create_window("SNAKE", "3R-IN1B", width, height);
MLV_change_frame_rate(24);
while (
MLV_get_event(
&touche, NULL, NULL,
NULL, NULL,
NULL, NULL, NULL,
NULL) == MLV_NONE ||
touche != MLV_KEYBOARD_ESCAPE)
{
Element result;
char stats[256];
MLV_clear_window(MLV_COLOR_BLACK);
loop_count = (loop_count + 1) % speed;
if (loop_count == 0)
{
nb_fruit--;
if (nb_fruit == 0)
if (boost_spawn_timer >= boost_spawn_interval)
{
MLV_draw_text(
width / 2 - 75, height / 2,
"You Win! All fruits collected.",
MLV_COLOR_GREEN);
int x, y;
do
{
x = rand() % g->nbc;
y = rand() % g->nbl;
} while (g->grid[y][x] != EMPTY);
g->grid[y][x] = BOOST;
boost_spawn_timer = 0;
boost_spawn_interval = 50 + rand() % BASE_SPEED;
}
else
{
boost_spawn_timer++;
}
result = move_snake(snake, g);
if (result == WALL || result == SNAKE)
{
if (result == WALL)
{
MLV_draw_text(width / 2 - 80, height / 2, "Game Over! You hit a wall.", MLV_COLOR_RED);
}
else if (result == SNAKE)
{
MLV_draw_text(width / 2 - 80, height / 2, "Game Over! You hit yourself.", MLV_COLOR_RED);
}
MLV_actualise_window();
MLV_wait_seconds(3);
global_score = previous_score;
break;
}
else if (result == BOOST)
{
boosts++;
boost_duration = boost_duration_frames;
speed = BASE_SPEED - boosts;
speed = (BASE_SPEED - boosts) > 1 ? (BASE_SPEED - boosts) : 1;
printf("Boost collected! Speed increased. Boost duration: %d frames\n", boost_duration);
}
else if (result == FRUIT)
{
Position *tail = snake->segments_list;
Position *prev = NULL;
int dx, dy;
while (tail->next != NULL)
{
prev = tail;
tail = tail->next;
}
dx = tail->x - (prev ? prev->x : tail->x);
dy = tail->y - (prev ? prev->y : tail->y);
add_segment(snake, tail->x + dx, tail->y + dy);
place_snake(g, snake);
nb_fruit--;
global_score++;
if (snake->size == initial_size + total_fruits)
{
MLV_draw_text(
width / 2 - 200, height / 2,
"You Win! All fruits collected. Proceeding to the next level.",
MLV_COLOR_GREEN);
MLV_actualise_window();
MLV_wait_seconds(3);
current_level++;
break;
}
}
}
if (boost_duration > 0)
{
boost_duration--;
if (boost_duration == 0)
{
boosts--;
speed = (BASE_SPEED - boosts) > 1 ? (BASE_SPEED - boosts) : 1;
printf("Boost expired. Speed reset. Active boosts: %d\n", boosts);
}
}
draw_grid(g);
snprintf(stats, sizeof(stats),
"Level: %d | Fruits Left: %d/%d | Score: %d | Snake Size: %d | Boosts: %d",
current_level, nb_fruit, total_fruits, global_score, snake->size, boosts);
MLV_draw_text(10, height - 20, stats, MLV_COLOR_WHITE);
MLV_actualise_window();
switch (touche)
{
case MLV_KEYBOARD_DOWN:
if (snake->dir != TOP)
snake->dir = BOTTOM;
break;
case MLV_KEYBOARD_UP:
if (snake->dir != BOTTOM)
snake->dir = TOP;
break;
case MLV_KEYBOARD_LEFT:
if (snake->dir != RIGHT)
snake->dir = LEFT;
break;
case MLV_KEYBOARD_RIGHT:
if (snake->dir != LEFT)
snake->dir = RIGHT;
break;
default:
break;
}
touche = MLV_KEYBOARD_NONE;
MLV_delay_according_to_frame_rate();
}
draw_grid(g);
MLV_actualise_window();
MLV_free_window();
free_grid(g);
free_snake(snake);
input_file = NULL;
switch (touche)
if (touche == MLV_KEYBOARD_ESCAPE)
{
case MLV_KEYBOARD_DOWN:
if (snake.dir != TOP)
snake.dir = BOTTOM;
break;
case MLV_KEYBOARD_UP:
if (snake.dir != BOTTOM)
snake.dir = TOP;
break;
case MLV_KEYBOARD_LEFT:
if (snake.dir != RIGHT)
snake.dir = LEFT;
break;
case MLV_KEYBOARD_RIGHT:
if (snake.dir != LEFT)
snake.dir = RIGHT;
break;
default:
break;
}
touche = MLV_KEYBOARD_NONE;
MLV_delay_according_to_frame_rate();
}
MLV_free_window();
free_grid(g);
return 0;
}

240
grid.c
View File

@@ -1,5 +1,6 @@
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <MLV/MLV_all.h>
#include "grid.h"
#include "snake.h"
@@ -23,7 +24,7 @@ Grid *allocate_grid(int n, int m)
}
for (i = 0; i < n; i++)
{
g->grid[i] = calloc(m + 1, sizeof(char));
g->grid[i] = calloc(m + 2, sizeof(char));
if (!g->grid[i])
{
fprintf(stderr, "Error: could not allocate row.\n");
@@ -46,7 +47,7 @@ void free_grid(Grid *g)
free(g);
}
void debug(Grid *g)
void debug_grid(Grid *g)
{
int i;
for (i = 0; i < g->nbl; i++)
@@ -68,6 +69,37 @@ void draw_grid(Grid *g)
int window_width = MLV_get_window_width();
int window_height = MLV_get_window_height();
int cell_size = compute_size(g, window_width, window_height);
MLV_Image *image_wall, *image_fruit, *image_snake, *image_snake_head, *image_boost, *image_empty;
image_wall = MLV_load_image("./assets/wall.png");
image_fruit = MLV_load_image("./assets/fruit.png");
image_snake = MLV_load_image("./assets/snake.png");
image_snake_head = MLV_load_image("./assets/snake_head.png");
image_boost = MLV_load_image("./assets/boost.png");
image_empty = MLV_load_image("./assets/grass.png");
if (image_wall != NULL)
{
MLV_resize_image_with_proportions(image_wall, cell_size, cell_size);
}
if (image_fruit != NULL)
{
MLV_resize_image_with_proportions(image_fruit, cell_size, cell_size);
}
if (image_snake != NULL)
{
MLV_resize_image_with_proportions(image_snake, cell_size, cell_size);
}
if (image_snake_head != NULL)
{
MLV_resize_image_with_proportions(image_snake_head, cell_size, cell_size);
}
if (image_boost != NULL)
{
MLV_resize_image_with_proportions(image_boost, cell_size, cell_size);
}
if (image_empty != NULL)
{
MLV_resize_image_with_proportions(image_empty, cell_size, cell_size);
}
MLV_draw_filled_rectangle(0, 0, window_width, window_height, MLV_COLOR_BLACK);
@@ -81,16 +113,65 @@ void draw_grid(Grid *g)
switch (g->grid[i][j])
{
case WALL:
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_BROWN);
if (image_wall == NULL)
{
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_BROWN);
}
else
{
MLV_draw_image(image_wall, x, y);
}
break;
case EMPTY:
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_WHITE);
if (image_empty != NULL)
{
MLV_draw_image(image_empty, x, y);
}
else
{
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_WHITE);
}
break;
case FRUIT:
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_RED);
if (image_fruit == NULL)
{
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_RED);
}
else
{
MLV_draw_image(image_fruit, x, y);
}
break;
case SNAKE:
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_GREEN);
if (image_snake == NULL)
{
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_GREEN);
}
else
{
MLV_draw_image(image_snake, x, y);
}
break;
case SNAKEHEAD:
if (image_snake == NULL)
{
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_GREEN);
}
else
{
MLV_draw_image(image_snake_head, x, y);
}
break;
case BOOST:
if (image_boost == NULL)
{
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_YELLOW);
}
else
{
MLV_draw_image(image_boost, x, y);
}
break;
default:
MLV_draw_filled_rectangle(x, y, cell_size, cell_size, MLV_COLOR_BLACK);
@@ -102,28 +183,45 @@ void draw_grid(Grid *g)
void place_snake(Grid *g, struct SnakeStruct *snake)
{
int i;
for (i = 0; i < SNAKE_SIZE; i++)
Position *current = snake->segments_list;
if (current != NULL)
{
Coord part = snake->pos[i];
g->grid[part.y][part.x] = 's';
g->grid[current->y][current->x] = SNAKEHEAD;
current = current->next;
}
while (current != NULL)
{
g->grid[current->y][current->x] = SNAKE;
current = current->next;
}
}
Element move_snake(struct SnakeStruct *snake, Grid *g)
{
Coord tail = snake->pos[SNAKE_SIZE - 1];
Coord head;
Position *tail = snake->segments_list;
Position *head;
Element element_at_head;
g->grid[tail.y][tail.x] = EMPTY;
while (tail->next != NULL)
{
tail = tail->next;
}
g->grid[tail->y][tail->x] = EMPTY;
crawl(snake, g);
head = snake->pos[0];
element_at_head = g->grid[head.y][head.x];
head = snake->segments_list;
element_at_head = g->grid[head->y][head->x];
g->grid[head.y][head.x] = SNAKE;
g->grid[head->y][head->x] = SNAKEHEAD;
if (head->next != NULL)
{
g->grid[head->next->y][head->next->x] = SNAKE;
}
return element_at_head;
}
@@ -174,4 +272,114 @@ void copy(const char *src, char *dst)
i++;
}
dst[i] = '\0';
}
static bool are_adjacent(Position *a, Position *b)
{
return (a->x == b->x && abs(a->y - b->y) == 1) ||
(a->y == b->y && abs(a->x - b->x) == 1);
}
int is_snake_connected(struct SnakeStruct *snake)
{
Position *current = snake->segments_list;
while (current && current->next)
{
if (!are_adjacent(current, current->next))
{
return 0;
}
current = current->next;
}
return 1;
}
void read_snake_from_grid(Grid *g, struct SnakeStruct *snake)
{
Position *positions = malloc(g->nbl * g->nbc * sizeof(Position));
int positions_count = 0;
Position *head = NULL;
Position *current;
int i;
int *used = NULL;
for (i = 0; i < g->nbl; i++)
{
int j;
for (j = 0; j < g->nbc; j++)
{
if (g->grid[i][j] == SNAKE || g->grid[i][j] == SNAKEHEAD)
{
positions[positions_count].x = j;
positions[positions_count].y = i;
positions[positions_count].next = NULL;
if (g->grid[i][j] == SNAKEHEAD)
{
head = &positions[positions_count];
}
positions_count++;
}
}
}
if (head == NULL)
{
fprintf(stderr, "Error: Snake head (S) not found in the grid.\n");
free(positions);
exit(EXIT_FAILURE);
}
used = malloc(positions_count * sizeof(int));
if (!used) {
fprintf(stderr, "Error: Could not allocate memory for used array.\n");
free(positions);
exit(EXIT_FAILURE);
}
for (i = 0; i < positions_count; i++)
{
used[i] = 0;
}
add_segment(snake, head->x, head->y);
used[head - positions] = 1;
current = head;
while (1)
{
int found = 0;
int j;
for (j = 0; j < positions_count; j++)
{
if (!used[j] && are_adjacent(current, &positions[j]))
{
add_segment(snake, positions[j].x, positions[j].y);
used[j] = 1;
current = &positions[j];
found = 1;
break;
}
}
if (!found)
{
break;
}
}
for (i = 0; i < positions_count; i++)
{
if (!used[i])
{
fprintf(stderr, "Error: Snake is not fully connected in the grid.\n");
free(positions);
exit(EXIT_FAILURE);
}
}
snake->dir = determine_initial_direction(g, snake->segments_list);
free(positions);
free(used);
}

10
grid.h
View File

@@ -19,12 +19,14 @@ typedef enum
WALL = 'w',
EMPTY = ' ',
FRUIT = 'f',
SNAKE = 's'
SNAKE = 's',
SNAKEHEAD = 'S',
BOOST = 'b'
} Element;
Grid* allocate_grid(int n, int m);
Grid *allocate_grid(int n, int m);
void free_grid(Grid *g);
void debug(Grid *g);
void debug_grid(Grid *g);
int compute_size(Grid *g, int w, int h);
void draw_grid(Grid *g);
void place_snake(Grid *g, struct SnakeStruct *snake);
@@ -32,5 +34,7 @@ Element move_snake(struct SnakeStruct *snake, Grid *g);
int count_nb_lines(FILE *stream);
int count_fruits(FILE *stream, Grid *g);
void copy(const char *src, char *dst);
int is_snake_connected(struct SnakeStruct *snake);
void read_snake_from_grid(Grid *g, struct SnakeStruct *snake);
#endif /* GRID_H */

View File

@@ -1,7 +1,7 @@
w w
f
ssssS
f f

25
levels/level2 Normal file
View File

@@ -0,0 +1,25 @@
w w
f
f f
f
wwwwwwwwww
Sssssw w w
w f w
wwwwww w
w
w
f w
w
f f w
w
f w
w w
w
w
w

22
levels/level3 Normal file
View File

@@ -0,0 +1,22 @@
w w
w
ssssS w
w f
w
w
w
w f
f w
wwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwww
f
w w

22
levels/level4 Normal file
View File

@@ -0,0 +1,22 @@
w w
w
f w
ssssS w
wwwwwwwwww
f
w
w
w
www w
f w f
w
w
f
wwwwwww
f
w w

137
snake.c
View File

@@ -1,30 +1,147 @@
#include <stdlib.h>
#include "grid.h"
#include "snake.h"
void crawl(Snake *snake, Grid *g)
Snake *new_snake(void)
{
int i;
Coord new_head = snake->pos[0];
Snake *snake = (Snake *)malloc(sizeof(Snake));
if (snake == NULL)
{
fprintf(stderr, "Memory allocation failed\n");
exit(EXIT_FAILURE);
}
snake->size = 0;
snake->segments_list = NULL;
snake->dir = RIGHT;
return snake;
}
void add_segment(Snake *snake, int x, int y)
{
Position *new_segment = (Position *)malloc(sizeof(Position));
if (new_segment == NULL)
{
fprintf(stderr, "Memory allocation failed\n");
exit(EXIT_FAILURE);
}
new_segment->x = x;
new_segment->y = y;
new_segment->next = NULL;
if (snake->segments_list == NULL)
{
snake->segments_list = new_segment;
}
else
{
Position *current = snake->segments_list;
while (current->next != NULL)
{
current = current->next;
}
current->next = new_segment;
}
snake->size++;
}
void free_snake(Snake *snake)
{
Position *current = snake->segments_list;
while (current != NULL)
{
Position *next = current->next;
free(current);
current = next;
}
free(snake);
}
void debug_snake(Snake *snake)
{
Position *current = snake->segments_list;
printf("Snake segments:\n");
while (current != NULL)
{
printf(" (%d, %d)\n", current->x, current->y);
current = current->next;
}
printf("Snake size: %d\n", snake->size);
}
void crawl(Snake *snake, struct GridStruct *g)
{
Position *new_head = (Position *)malloc(sizeof(Position));
Position *current;
if (new_head == NULL)
{
fprintf(stderr, "Memory allocation failed\n");
exit(EXIT_FAILURE);
}
new_head->x = snake->segments_list->x;
new_head->y = snake->segments_list->y;
switch (snake->dir)
{
case LEFT:
new_head.x = (new_head.x - 1 + g->nbc) % g->nbc;
new_head->x = (new_head->x - 1 + g->nbc) % g->nbc;
break;
case RIGHT:
new_head.x = (new_head.x + 1) % g->nbc;
new_head->x = (new_head->x + 1) % g->nbc;
break;
case TOP:
new_head.y = (new_head.y - 1 + g->nbl) % g->nbl;
new_head->y = (new_head->y - 1 + g->nbl) % g->nbl;
break;
case BOTTOM:
new_head.y = (new_head.y + 1) % g->nbl;
new_head->y = (new_head->y + 1) % g->nbl;
break;
}
for (i = SNAKE_SIZE - 1; i > 0; i--)
new_head->next = snake->segments_list;
snake->segments_list = new_head;
current = snake->segments_list;
while (current->next != NULL && current->next->next != NULL)
{
snake->pos[i] = snake->pos[i - 1];
current = current->next;
}
snake->pos[0] = new_head;
free(current->next);
current->next = NULL;
}
Direction determine_initial_direction(struct GridStruct *g, Position *head)
{
int x = head->x;
int y = head->y;
printf("Determining initial direction from position (%d, %d)\n", x, y);
if (x + 1 < g->nbc && g->grid[y][x + 1] != WALL && g->grid[y][x + 1] != SNAKE)
{
printf("Direction: RIGHT\n");
return RIGHT;
}
if (y + 1 < g->nbl && g->grid[y + 1][x] != WALL && g->grid[y + 1][x] != SNAKE)
{
printf("Direction: BOTTOM\n");
return BOTTOM;
}
if (x - 1 >= 0 && g->grid[y][x - 1] != WALL && g->grid[y][x - 1] != SNAKE)
{
printf("Direction: LEFT\n");
return LEFT;
}
if (y - 1 >= 0 && g->grid[y - 1][x] != WALL && g->grid[y - 1][x] != SNAKE)
{
printf("Direction: TOP\n");
return TOP;
}
printf("Default direction: BOTTOM\n");
return BOTTOM;
}

15
snake.h
View File

@@ -3,13 +3,12 @@
struct GridStruct;
#define SNAKE_SIZE 4
typedef struct
typedef struct Position
{
int x;
int y;
} Coord;
struct Position *next;
} Position;
typedef enum
{
@@ -21,12 +20,18 @@ typedef enum
struct SnakeStruct
{
Coord pos[SNAKE_SIZE];
Position *segments_list;
int size;
Direction dir;
};
typedef struct SnakeStruct Snake;
Snake *new_snake(void);
void add_segment(Snake *snake, int x, int y);
void free_snake(Snake *snake);
void debug_snake(Snake *snake);
void crawl(Snake *snake, struct GridStruct *g);
Direction determine_initial_direction(struct GridStruct *g, Position *head);
#endif /* SNAKE_H */