Finish unicorn isolation

This commit is contained in:
momo5502
2024-08-21 18:58:29 +02:00
parent 024e837ad9
commit 48f9217d0b
12 changed files with 878 additions and 590 deletions

View File

@@ -1,15 +1,19 @@
#pragma once
#include <chrono>
#include <vector>
#include <functional>
#include <cassert>
#include "memory_permission.hpp"
#include "memory_region.hpp"
struct memory_region
{
uint64_t start;
size_t length;
memory_permission pemissions;
};
struct emulator_hook;
using memory_operation = memory_permission;
using instruction_hook_callback = std::function<void(uint64_t address)>;
using simple_memory_hook_callback = std::function<void(uint64_t address, size_t size)>;
using complex_memory_hook_callback = std::function<void(uint64_t address, size_t size, memory_operation operation)>;
class emulator
{
@@ -39,54 +43,39 @@ public:
virtual void protect_memory(uint64_t address, size_t size, memory_permission permissions) = 0;
virtual std::vector<memory_region> get_memory_regions() = 0;
};
template <typename PointerType, typename Register, Register StackPointer>
class typed_emulator : public emulator
{
public:
using registers = Register;
using pointer_type = PointerType;
virtual emulator_hook* hook_memory_access(uint64_t address, size_t size, memory_operation filter,
complex_memory_hook_callback callback) = 0;
virtual emulator_hook* hook_instruction(int instruction_type, instruction_hook_callback callback) = 0;
static constexpr size_t pointer_size = sizeof(pointer_type);
static constexpr registers stack_pointer = StackPointer;
virtual void delete_hook(emulator_hook* hook) = 0;
void write_register(registers reg, const void* value, const size_t size)
emulator_hook* hook_memory_read(const uint64_t address, const size_t size, simple_memory_hook_callback callback)
{
this->write_raw_register(static_cast<int>(reg), value, size);
return this->hook_simple_memory_access(address, size, std::move(callback), memory_operation::read);
}
void read_register(registers reg, void* value, const size_t size)
emulator_hook* hook_memory_write(const uint64_t address, const size_t size, simple_memory_hook_callback callback)
{
this->read_raw_register(static_cast<int>(reg), value, size);
return this->hook_simple_memory_access(address, size, std::move(callback), memory_operation::write);
}
template <typename T = uint64_t>
T reg(const registers regid) const
emulator_hook* hook_memory_execution(const uint64_t address, const size_t size,
simple_memory_hook_callback callback)
{
T value{};
this->read_register(regid, &value, sizeof(value));
return value;
}
template <typename T = uint64_t, typename S>
void reg(const registers regid, const S& maybe_value) const
{
T value = static_cast<T>(maybe_value);
this->write_register(regid, &value, sizeof(value));
}
pointer_type read_stack(const size_t index) const
{
uint64_t result{};
const auto sp = this->reg(stack_pointer);
this->read_memory(sp + (index * pointer_size), &result, sizeof(result));
return result;
return this->hook_simple_memory_access(address, size, std::move(callback), memory_operation::exec);
}
private:
void read_raw_register(int reg, void* value, size_t size) override = 0;
void write_raw_register(int reg, const void* value, size_t size) override = 0;
emulator_hook* hook_simple_memory_access(const uint64_t address, const size_t size,
simple_memory_hook_callback callback, const memory_operation operation)
{
assert((static_cast<uint8_t>(operation) & (static_cast<uint8_t>(operation) - 1)) == 0);
return this->hook_memory_access(address, size, operation,
[c = std::move(callback)](const uint64_t a, const size_t s,
memory_operation)
{
c(a, s);
});
}
};

View File

@@ -0,0 +1,9 @@
#pragma once
#include "memory_permission.hpp"
struct memory_region
{
uint64_t start;
size_t length;
memory_permission pemissions;
};

View File

@@ -0,0 +1,75 @@
#pragma once
#include "emulator.hpp"
using simple_instruction_hook_callback = std::function<void()>;
template <typename PointerType, typename Register, Register InstructionPointer, Register
StackPointer, typename HookableInstructions>
class typed_emulator : public emulator
{
public:
using registers = Register;
using pointer_type = PointerType;
using hookable_instructions = HookableInstructions;
static constexpr size_t pointer_size = sizeof(pointer_type);
static constexpr registers stack_pointer = StackPointer;
static constexpr registers instruction_pointer = InstructionPointer;
void write_register(registers reg, const void* value, const size_t size)
{
this->write_raw_register(static_cast<int>(reg), value, size);
}
void read_register(registers reg, void* value, const size_t size)
{
this->read_raw_register(static_cast<int>(reg), value, size);
}
template <typename T = pointer_type>
T reg(const registers regid)
{
T value{};
this->read_register(regid, &value, sizeof(value));
return value;
}
template <typename T = pointer_type, typename S>
void reg(const registers regid, const S& maybe_value)
{
T value = static_cast<T>(maybe_value);
this->write_register(regid, &value, sizeof(value));
}
pointer_type read_stack(const size_t index)
{
pointer_type result{};
const auto sp = this->reg(stack_pointer);
this->read_memory(sp + (index * pointer_size), &result, sizeof(result));
return result;
}
emulator_hook* hook_instruction(hookable_instructions instruction_type, instruction_hook_callback callback)
{
return this->hook_instruction(instruction_type, [this, c = std::move(callback)]
{
const auto ip = static_cast<uint64_t>(this->reg(instruction_pointer));
c(ip);
});
}
virtual emulator_hook* hook_instruction(hookable_instructions instruction_type,
simple_instruction_hook_callback callback) = 0;
private:
emulator_hook* hook_instruction(int instruction_type, instruction_hook_callback callback) override
{
return this->hook_instruction(static_cast<hookable_instructions>(instruction_type), std::move(callback));
}
void read_raw_register(int reg, void* value, size_t size) override = 0;
void write_raw_register(int reg, const void* value, size_t size) override = 0;
};

View File

@@ -1,248 +1,12 @@
#pragma once
#include "emulator.hpp"
#include "typed_emulator.hpp"
#include "x64_register.hpp"
enum class x64_register
enum class x64_hookable_instructions
{
invalid = 0,
ah,
al,
ax,
bh,
bl,
bp,
bpl,
bx,
ch,
cl,
cs,
cx,
dh,
di,
dil,
dl,
ds,
dx,
eax,
ebp,
ebx,
ecx,
edi,
edx,
eflags,
eip,
es = eip + 2,
esi,
esp,
fpsw,
fs,
gs,
ip,
rax,
rbp,
rbx,
rcx,
rdi,
rdx,
rip,
rsi = rip + 2,
rsp,
si,
sil,
sp,
spl,
ss,
cr0,
cr1,
cr2,
cr3,
cr4,
cr8 = cr4 + 4,
dr0 = cr8 + 8,
dr1,
dr2,
dr3,
dr4,
dr5,
dr6,
dr7,
fp0 = dr7 + 9,
fp1,
fp2,
fp3,
fp4,
fp5,
fp6,
fp7,
k0,
k1,
k2,
k3,
k4,
k5,
k6,
k7,
mm0,
mm1,
mm2,
mm3,
mm4,
mm5,
mm6,
mm7,
r8,
r9,
r10,
r11,
r12,
r13,
r14,
r15,
st0,
st1,
st2,
st3,
st4,
st5,
st6,
st7,
xmm0,
xmm1,
xmm2,
xmm3,
xmm4,
xmm5,
xmm6,
xmm7,
xmm8,
xmm9,
xmm10,
xmm11,
xmm12,
xmm13,
xmm14,
xmm15,
xmm16,
xmm17,
xmm18,
xmm19,
xmm20,
xmm21,
xmm22,
xmm23,
xmm24,
xmm25,
xmm26,
xmm27,
xmm28,
xmm29,
xmm30,
xmm31,
ymm0,
ymm1,
ymm2,
ymm3,
ymm4,
ymm5,
ymm6,
ymm7,
ymm8,
ymm9,
ymm10,
ymm11,
ymm12,
ymm13,
ymm14,
ymm15,
ymm16,
ymm17,
ymm18,
ymm19,
ymm20,
ymm21,
ymm22,
ymm23,
ymm24,
ymm25,
ymm26,
ymm27,
ymm28,
ymm29,
ymm30,
ymm31,
zmm0,
zmm1,
zmm2,
zmm3,
zmm4,
zmm5,
zmm6,
zmm7,
zmm8,
zmm9,
zmm10,
zmm11,
zmm12,
zmm13,
zmm14,
zmm15,
zmm16,
zmm17,
zmm18,
zmm19,
zmm20,
zmm21,
zmm22,
zmm23,
zmm24,
zmm25,
zmm26,
zmm27,
zmm28,
zmm29,
zmm30,
zmm31,
r8b,
r9b,
r10b,
r11b,
r12b,
r13b,
r14b,
r15b,
r8d,
r9d,
r10d,
r11d,
r12d,
r13d,
r14d,
r15d,
r8w,
r9w,
r10w,
r11w,
r12w,
r13w,
r14w,
r15w,
idtr,
gdtr,
ldtr,
tr,
fpcw,
fptag,
msr,
mxcsr,
fs_base,
gs_base,
flags,
rflags,
fip,
fcs,
fdp,
fds,
fop,
end, // Must be last
syscall,
cpuid,
};
using x64_emulator = typed_emulator<uint64_t, x64_register, x64_register::rsp>;
using x64_emulator = typed_emulator<uint64_t, x64_register, x64_register::rip,
x64_register::rsp, x64_hookable_instructions>;

View File

@@ -0,0 +1,245 @@
#pragma once
enum class x64_register
{
invalid = 0,
ah,
al,
ax,
bh,
bl,
bp,
bpl,
bx,
ch,
cl,
cs,
cx,
dh,
di,
dil,
dl,
ds,
dx,
eax,
ebp,
ebx,
ecx,
edi,
edx,
eflags,
eip,
es = eip + 2,
esi,
esp,
fpsw,
fs,
gs,
ip,
rax,
rbp,
rbx,
rcx,
rdi,
rdx,
rip,
rsi = rip + 2,
rsp,
si,
sil,
sp,
spl,
ss,
cr0,
cr1,
cr2,
cr3,
cr4,
cr8 = cr4 + 4,
dr0 = cr8 + 8,
dr1,
dr2,
dr3,
dr4,
dr5,
dr6,
dr7,
fp0 = dr7 + 9,
fp1,
fp2,
fp3,
fp4,
fp5,
fp6,
fp7,
k0,
k1,
k2,
k3,
k4,
k5,
k6,
k7,
mm0,
mm1,
mm2,
mm3,
mm4,
mm5,
mm6,
mm7,
r8,
r9,
r10,
r11,
r12,
r13,
r14,
r15,
st0,
st1,
st2,
st3,
st4,
st5,
st6,
st7,
xmm0,
xmm1,
xmm2,
xmm3,
xmm4,
xmm5,
xmm6,
xmm7,
xmm8,
xmm9,
xmm10,
xmm11,
xmm12,
xmm13,
xmm14,
xmm15,
xmm16,
xmm17,
xmm18,
xmm19,
xmm20,
xmm21,
xmm22,
xmm23,
xmm24,
xmm25,
xmm26,
xmm27,
xmm28,
xmm29,
xmm30,
xmm31,
ymm0,
ymm1,
ymm2,
ymm3,
ymm4,
ymm5,
ymm6,
ymm7,
ymm8,
ymm9,
ymm10,
ymm11,
ymm12,
ymm13,
ymm14,
ymm15,
ymm16,
ymm17,
ymm18,
ymm19,
ymm20,
ymm21,
ymm22,
ymm23,
ymm24,
ymm25,
ymm26,
ymm27,
ymm28,
ymm29,
ymm30,
ymm31,
zmm0,
zmm1,
zmm2,
zmm3,
zmm4,
zmm5,
zmm6,
zmm7,
zmm8,
zmm9,
zmm10,
zmm11,
zmm12,
zmm13,
zmm14,
zmm15,
zmm16,
zmm17,
zmm18,
zmm19,
zmm20,
zmm21,
zmm22,
zmm23,
zmm24,
zmm25,
zmm26,
zmm27,
zmm28,
zmm29,
zmm30,
zmm31,
r8b,
r9b,
r10b,
r11b,
r12b,
r13b,
r14b,
r15b,
r8d,
r9d,
r10d,
r11d,
r12d,
r13d,
r14d,
r15d,
r8w,
r9w,
r10w,
r11w,
r12w,
r13w,
r14w,
r15w,
idtr,
gdtr,
ldtr,
tr,
fpcw,
fptag,
msr,
mxcsr,
fs_base,
gs_base,
flags,
rflags,
fip,
fcs,
fdp,
fds,
fop,
end, // Must be last
};

View File

@@ -1,6 +1,7 @@
#define UNICORN_EMULATOR_IMPL
#include "unicorn_x64_emulator.hpp"
#define NOMINMAX
#include <span>
#include <unicorn/unicorn.h>
@@ -39,6 +40,32 @@ namespace unicorn
throw_if_unicorn_error(error_code);
}
uc_x86_insn map_hookable_instruction(const x64_hookable_instructions instruction)
{
switch (instruction)
{
case x64_hookable_instructions::syscall:
return UC_X86_INS_SYSCALL;
case x64_hookable_instructions::cpuid:
return UC_X86_INS_CPUID;
}
throw std::runtime_error("Bad instruction for mapping");
}
memory_operation map_memory_operation(const uc_mem_type mem_type)
{
switch (mem_type)
{
case UC_MEM_READ:
return memory_permission::read;
case UC_MEM_WRITE:
return memory_permission::write;
default:
return memory_permission::none;
}
}
class unicorn_memory_regions
{
public:
@@ -70,6 +97,151 @@ namespace unicorn
uc_mem_region* regions_{};
};
struct object
{
object() = default;
virtual ~object() = default;
object(object&&) = default;
object(const object&) = default;
object& operator=(object&&) = default;
object& operator=(const object&) = default;
};
struct hook_object : object
{
emulator_hook* as_opaque_hook()
{
return reinterpret_cast<emulator_hook*>(this);
}
};
class unicorn_hook
{
public:
unicorn_hook() = default;
unicorn_hook(uc_engine* uc)
: unicorn_hook(uc, {})
{
}
unicorn_hook(uc_engine* uc, const uc_hook hook)
: uc_(uc)
, hook_(hook)
{
}
~unicorn_hook()
{
release();
}
unicorn_hook(const unicorn_hook&) = delete;
unicorn_hook& operator=(const unicorn_hook&) = delete;
unicorn_hook(unicorn_hook&& obj) noexcept
{
this->operator=(std::move(obj));
}
uc_hook* make_reference()
{
if (!this->uc_)
{
throw std::runtime_error("Cannot make reference on default constructed hook");
}
this->release();
return &this->hook_;
}
unicorn_hook& operator=(unicorn_hook&& obj) noexcept
{
if (this != &obj)
{
this->release();
this->uc_ = obj.uc_;
this->hook_ = obj.hook_;
obj.uc_ = {};
}
return *this;
}
void release()
{
if (this->hook_ && this->uc_)
{
uc_hook_del(this->uc_, this->hook_);
this->hook_ = {};
}
}
private:
uc_engine* uc_{};
uc_hook hook_{};
};
template <typename ReturnType, typename... Args>
class function_wrapper : public object
{
public:
using user_data_pointer = void*;
using c_function_type = ReturnType(Args..., user_data_pointer);
using functor_type = std::function<ReturnType(Args...)>;
function_wrapper(functor_type functor)
: functor_(std::make_unique<functor_type>(std::move(functor)))
{
}
c_function_type* get_function()
{
return +[](Args... args, user_data_pointer user_data) -> ReturnType
{
return (*static_cast<functor_type*>(user_data))(std::forward<Args>(args)...);
};
}
user_data_pointer get_user_data() const
{
return this->functor_.get();
}
private:
std::unique_ptr<functor_type> functor_{};
};
class hook_container : public hook_object
{
public:
template <typename T>
requires(std::is_base_of_v<object, T>
&& std::is_move_constructible_v<T>)
void add(T data, unicorn_hook hook)
{
hook_entry entry{};
entry.data = std::make_unique<T>(std::move(data));
entry.hook = std::move(hook);
this->hooks_.emplace_back(std::move(entry));
}
private:
struct hook_entry
{
std::unique_ptr<object> data{};
unicorn_hook hook{};
};
std::vector<hook_entry> hooks_;
};
class unicorn_x64_emulator : public x64_emulator
{
public:
@@ -169,6 +341,121 @@ namespace unicorn
return result;
}
emulator_hook* hook_instruction(x64_hookable_instructions instruction_type,
simple_instruction_hook_callback callback)
{
const auto uc_instruction = map_hookable_instruction(instruction_type);
function_wrapper<void, uc_engine*> wrapper([c = std::move(callback)](uc_engine*)
{
c();
});
unicorn_hook hook{*this};
uce(uc_hook_add(*this, hook.make_reference(), UC_HOOK_INSN, wrapper.get_function(),
wrapper.get_user_data(), 0, std::numeric_limits<pointer_type>::max(), uc_instruction));
auto container = std::make_unique<hook_container>();
container->add(std::move(wrapper), std::move(hook));
auto* result = container->as_opaque_hook();
this->hooks_.push_back(std::move(container));
return result;
}
emulator_hook* hook_memory_access(uint64_t address, size_t size, memory_operation filter,
complex_memory_hook_callback callback) override
{
if (filter == memory_permission::none)
{
return nullptr;
}
const auto shared_callback = std::make_shared<complex_memory_hook_callback>(std::move(callback));
auto container = std::make_unique<hook_container>();
if ((filter & memory_operation::read) != memory_operation::none)
{
function_wrapper<void, uc_engine*, uc_mem_type, uint64_t, int, int64_t> wrapper(
[shared_callback](uc_engine*, const uc_mem_type type, const uint64_t address, const int size,
const int64_t)
{
const auto operation = map_memory_operation(type);
if (operation != memory_permission::none)
{
(*shared_callback)(address, static_cast<uint64_t>(size), operation);
}
});
unicorn_hook hook{*this};
uce(uc_hook_add(*this, hook.make_reference(), UC_HOOK_MEM_READ, wrapper.get_function(),
wrapper.get_user_data(), address, address + size));
container->add(std::move(wrapper), std::move(hook));
}
if ((filter & memory_operation::write) != memory_operation::none)
{
function_wrapper<void, uc_engine*, uc_mem_type, uint64_t, int, int64_t> wrapper(
[shared_callback](uc_engine*, const uc_mem_type type, const uint64_t address, const int size,
const int64_t)
{
const auto operation = map_memory_operation(type);
if (operation != memory_permission::none)
{
(*shared_callback)(address, static_cast<uint64_t>(size), operation);
}
});
unicorn_hook hook{*this};
uce(uc_hook_add(*this, hook.make_reference(), UC_HOOK_MEM_WRITE, wrapper.get_function(),
wrapper.get_user_data(), address, address + size));
container->add(std::move(wrapper), std::move(hook));
}
if ((filter & memory_operation::exec) != memory_operation::none)
{
function_wrapper<void, uc_engine*, uint64_t, uint32_t> wrapper(
[shared_callback](uc_engine*, const uint64_t address, const uint32_t size)
{
(*shared_callback)(address, static_cast<uint64_t>(size), memory_permission::exec);
});
unicorn_hook hook{*this};
uce(uc_hook_add(*this, hook.make_reference(), UC_HOOK_CODE, wrapper.get_function(),
wrapper.get_user_data(), address, address + size));
container->add(std::move(wrapper), std::move(hook));
}
auto* result = container->as_opaque_hook();
this->hooks_.push_back(std::move(container));
return result;
}
void delete_hook(emulator_hook* hook) override
{
const auto entry = std::ranges::find_if(this->hooks_, [&](const std::unique_ptr<hook_object>& hook_ptr)
{
return hook_ptr->as_opaque_hook() == hook;
});
if (entry != this->hooks_.end())
{
this->hooks_.erase(entry);
}
}
operator uc_engine*() const
{
return this->uc_;
@@ -176,6 +463,7 @@ namespace unicorn
private:
uc_engine* uc_{};
std::vector<std::unique_ptr<hook_object>> hooks_{};
};
}

View File

@@ -1,8 +1,6 @@
#pragma once
#include "memory_utils.hpp"
#include <emulator.hpp>
template <typename T>
class emulator_object
{
@@ -137,96 +135,3 @@ private:
uint64_t size_{};
uint64_t active_address_{0};
};
/*
class unicorn_hook
{
public:
using function = std::function<void(const unicorn& uc, uint64_t address, uint32_t size)>;
template <typename... Args>
unicorn_hook(const unicorn& uc, const int type, const uint64_t begin, const uint64_t end, function callback,
Args... args)
: uc_(&uc)
{
this->function_ = std::make_unique<internal_function>(
[c = std::move(callback), &uc](const uint64_t address, const uint32_t size)
{
c(uc, address, size);
});
void* handler = +[](uc_engine*, const uint64_t address, const uint32_t size,
void* user_data)
{
(*static_cast<internal_function*>(user_data))(address, size);
};
if (type == UC_HOOK_INSN)
{
handler = +[](uc_engine* uc, void* user_data)
{
uint64_t rip{};
uc_reg_read(uc, UC_X86_REG_RIP, &rip);
(*static_cast<internal_function*>(user_data))(rip, 0);
};
}
if (type == UC_HOOK_MEM_READ)
{
handler = +[](uc_engine*, const uc_mem_type, const uint64_t address, const int size,
const int64_t, void* user_data)
{
(*static_cast<internal_function*>(user_data))(address, size);
};
}
uce(uc_hook_add(*this->uc_, &this->hook_, type, handler, this->function_.get(), begin, end, args...));
}
unicorn_hook(const unicorn_hook&) = delete;
unicorn_hook& operator=(const unicorn_hook&) = delete;
unicorn_hook(unicorn_hook&& obj) noexcept
{
this->operator=(std::move(obj));
}
unicorn_hook& operator=(unicorn_hook&& obj) noexcept
{
if (this != &obj)
{
this->remove();
this->uc_ = obj.uc_;
this->hook_ = obj.hook_;
this->function_ = std::move(obj.function_);
obj.hook_ = {};
}
return *this;
}
~unicorn_hook()
{
this->remove();
}
void remove()
{
if (this->hook_)
{
uc_hook_del(*this->uc_, this->hook_);
this->hook_ = {};
}
this->function_ = {};
}
private:
using internal_function = std::function<void(uint64_t address, uint32_t size)>;
const unicorn* uc_{};
uc_hook hook_{};
std::unique_ptr<internal_function> function_{};
};
*/

View File

@@ -270,24 +270,21 @@ namespace
std::map<size_t, std::string> members_{};
};
/*
template <typename T>
unicorn_hook watch_object(const unicorn& uc, emulator_object<T> object)
void watch_object(x64_emulator& emu, emulator_object<T> object)
{
type_info<T> info{};
return {
uc, UC_HOOK_MEM_READ, object.value(), object.end(),
[i = std::move(info), o = std::move(object)](const unicorn&, const uint64_t address,
const uint32_t )
{
const auto offset = address - o.value();
printf("%s: %llX (%s)\n", i.get_type_name().c_str(), offset,
i.get_member_name(offset).c_str());
}
};
emu.hook_memory_read(object.value(), object.size(),
[i = std::move(info), object](const uint64_t address, size_t)
{
const auto offset = address - object.value();
printf("%s: %llX (%s)\n", i.get_type_name().c_str(), offset,
i.get_member_name(offset).c_str());
});
}
*/
void run()
{
const auto emu = unicorn::create_x64_emulator();
@@ -309,10 +306,6 @@ namespace
(void)entry1;
(void)entry2;
/*
std::vector<unicorn_hook> export_hooks{};
std::unordered_map<uint64_t, std::string> export_remap{};
for (const auto& exp : context.ntdll.exports)
{
@@ -322,53 +315,49 @@ namespace
for (const auto& exp : export_remap)
{
auto name = exp.second;
unicorn_hook hook(uc, UC_HOOK_CODE, exp.first, exp.first,
[n = std::move(name)](const unicorn& uc, const uint64_t address, const uint32_t)
{
printf("Executing function: %s (%llX)\n", n.c_str(), address);
emu->hook_memory_execution(exp.first, exp.first,
[&emu, n = std::move(name)](const uint64_t address, const size_t)
{
printf("Executing function: %s (%llX)\n", n.c_str(), address);
if (n == "RtlImageNtHeaderEx")
{
printf("Base: %llX\n", uc.reg(UC_X86_REG_RDX));
}
});
export_hooks.emplace_back(std::move(hook));
if (n == "RtlImageNtHeaderEx")
{
printf("Base: %llX\n", emu->reg(x64_register::rdx));
}
});
}
unicorn_hook hook(uc, UC_HOOK_INSN, 0, std::numeric_limits<uint64_t>::max(),
[&](const unicorn&, const uint64_t, const uint32_t)
{
handle_syscall(uc, context);
}, UC_X86_INS_SYSCALL);
emu->hook_instruction(x64_hookable_instructions::syscall, [&]
{
handle_syscall(*emu, context);
});
//export_hooks.emplace_back(watch_object(uc, context.teb));
//export_hooks.emplace_back(watch_object(uc, context.peb));
//export_hooks.emplace_back(watch_object(uc, context.process_params));
//export_hooks.emplace_back(watch_object(uc, context.kusd));
watch_object(*emu, context.teb);
watch_object(*emu, context.peb);
watch_object(*emu, context.process_params);
watch_object(*emu, context.kusd);
unicorn_hook hook2(uc, UC_HOOK_CODE, 0, std::numeric_limits<uint64_t>::max(),
[](const unicorn& uc, const uint64_t address, const uint32_t )
{
static bool hit = false;
// if (address == 0x1800D3C80)
if (address == 0x1800D4420)
{
//hit = true;
//uc.stop();
}
emu->hook_memory_execution(0, std::numeric_limits<size_t>::max(), [&](const uint64_t address, const size_t)
{
static bool hit = false;
// if (address == 0x1800D3C80)
if (address == 0x1800D4420)
{
//hit = true;
//uc.stop();
}
if (hit)
{
printf(
"Inst: %16llX - RAX: %16llX - RBX: %16llX - RCX: %16llX - RDX: %16llX - R8: %16llX - R9: %16llX - RDI: %16llX - RSI: %16llX\n",
address,
emu->reg(x64_register::rax), emu->reg(x64_register::rbx), emu->reg(x64_register::rcx),
emu->reg(x64_register::rdx), emu->reg(x64_register::r8), emu->reg(x64_register::r9),
emu->reg(x64_register::rdi), emu->reg(x64_register::rsi));
}
});
if (hit)
{
printf(
"Inst: %16llX - RAX: %16llX - RBX: %16llX - RCX: %16llX - RDX: %16llX - R8: %16llX - R9: %16llX - RDI: %16llX - RSI: %16llX\n",
address,
uc.reg(UC_X86_REG_RAX), uc.reg(UC_X86_REG_RBX), uc.reg(UC_X86_REG_RCX),
uc.reg(UC_X86_REG_RDX), uc.reg(UC_X86_REG_R8), uc.reg(UC_X86_REG_R9),
uc.reg(UC_X86_REG_RDI), uc.reg(UC_X86_REG_RSI));
}
});
*/
const auto execution_context = context.gs_segment.reserve<CONTEXT>();
emu->reg(x64_register::rcx, execution_context.value());

View File

@@ -59,7 +59,7 @@ inline bool is_memory_allocated(emulator& emu, const uint64_t address)
return false;
}
inline memory_permission map_nt_to_unicorn_protection(const uint32_t nt_protection)
inline memory_permission map_nt_to_emulator_protection(const uint32_t nt_protection)
{
switch (nt_protection)
{
@@ -80,7 +80,7 @@ inline memory_permission map_nt_to_unicorn_protection(const uint32_t nt_protecti
}
}
inline uint32_t map_unicorn_to_nt_protection(const memory_permission permission)
inline uint32_t map_emulator_to_nt_protection(const memory_permission permission)
{
const bool has_exec = (permission & memory_permission::exec) != memory_permission::none;
const bool has_read = (permission & memory_permission::read) != memory_permission::none;

View File

@@ -1,5 +1,5 @@
#pragma once
#include "unicorn_utils.hpp"
#include "emulator_utils.hpp"
struct mapped_binary
{

View File

@@ -56,8 +56,6 @@
#include <cassert>
#include <unicorn/unicorn.h>
#define NTDDI_WIN11_GE 0
#define PHNT_VERSION PHNT_WIN11
#include <phnt_windows.h>

View File

@@ -3,10 +3,10 @@
namespace
{
void handle_NtQueryPerformanceCounter(const unicorn& uc)
void handle_NtQueryPerformanceCounter(x64_emulator& emu)
{
const emulator_object<LARGE_INTEGER> performance_counter{uc, uc.reg(UC_X86_REG_R10)};
const emulator_object<LARGE_INTEGER> performance_frequency{uc, uc.reg(UC_X86_REG_RDX)};
const emulator_object<LARGE_INTEGER> performance_counter{emu, emu.reg(x64_register::r10)};
const emulator_object<LARGE_INTEGER> performance_frequency{emu, emu.reg(x64_register::rdx)};
try
{
@@ -26,45 +26,45 @@ namespace
});
}
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
}
catch (...)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_ACCESS_VIOLATION);
emu.reg<uint64_t>(x64_register::rax, STATUS_ACCESS_VIOLATION);
}
}
void handle_NtManageHotPatch(const unicorn& uc)
void handle_NtManageHotPatch(x64_emulator& emu)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
}
void handle_NtOpenKey(const unicorn& uc)
void handle_NtOpenKey(x64_emulator& emu)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
}
void handle_NtCreateIoCompletion(const unicorn& uc)
void handle_NtCreateIoCompletion(x64_emulator& emu)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
}
void handle_NtTraceEvent(const unicorn& uc)
void handle_NtTraceEvent(x64_emulator& emu)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
}
void handle_NtCreateEvent(const unicorn& uc, process_context& context)
void handle_NtCreateEvent(x64_emulator& emu, process_context& context)
{
const emulator_object<uint64_t> event_handle{uc, uc.reg(UC_X86_REG_R10)};
const auto object_attributes = uc.reg(UC_X86_REG_R8);
const auto event_type = uc.reg<EVENT_TYPE>(UC_X86_REG_R9D);
const auto initial_state = static_cast<BOOLEAN>(uc.read_stack(5));
const emulator_object<uint64_t> event_handle{emu, emu.reg(x64_register::r10)};
const auto object_attributes = emu.reg(x64_register::r8);
const auto event_type = emu.reg<EVENT_TYPE>(x64_register::r9d);
const auto initial_state = static_cast<BOOLEAN>(emu.read_stack(5));
if (object_attributes)
{
puts("Unsupported object attributes");
uc.stop();
emu.stop();
return;
}
@@ -75,34 +75,34 @@ namespace
static_assert(sizeof(EVENT_TYPE) == sizeof(uint32_t));
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
}
void handle_NtQueryVirtualMemory(const unicorn& uc, const process_context& context)
void handle_NtQueryVirtualMemory(x64_emulator& emu, const process_context& context)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const auto base_address = uc.reg(UC_X86_REG_RDX);
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_R8D);
const auto memory_information = uc.reg(UC_X86_REG_R9);
const auto memory_information_length = static_cast<uint32_t>(uc.read_stack(5));
const emulator_object<uint32_t> return_length{uc, uc.read_stack(6)};
const auto process_handle = emu.reg(x64_register::r10);
const auto base_address = emu.reg(x64_register::rdx);
const auto info_class = emu.reg<uint32_t>(x64_register::r8d);
const auto memory_information = emu.reg(x64_register::r9);
const auto memory_information_length = static_cast<uint32_t>(emu.read_stack(5));
const emulator_object<uint32_t> return_length{emu, emu.read_stack(6)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class == MemoryWorkingSetExInformation)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class != MemoryImageInformation)
{
printf("Unsupported memory info class: %X\n", info_class);
uc.stop();
emu.stop();
return;
}
@@ -113,18 +113,18 @@ namespace
if (memory_information_length != sizeof(MEMORY_IMAGE_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
emu.reg<uint64_t>(x64_register::rax, STATUS_BUFFER_OVERFLOW);
return;
}
if (!is_within_start_and_length(base_address, context.ntdll.image_base, context.ntdll.size_of_image))
{
puts("Bad image request");
uc.stop();
emu.stop();
return;
}
const emulator_object<MEMORY_IMAGE_INFORMATION> info{uc, memory_information};
const emulator_object<MEMORY_IMAGE_INFORMATION> info{emu, memory_information};
info.access([&](MEMORY_IMAGE_INFORMATION& image_info)
{
@@ -132,20 +132,20 @@ namespace
image_info.SizeOfImage = context.ntdll.size_of_image;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
}
void handle_NtQuerySystemInformation(const unicorn& uc)
void handle_NtQuerySystemInformation(x64_emulator& emu)
{
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_R10D);
const auto system_information = uc.reg(UC_X86_REG_RDX);
const auto system_information_length = uc.reg<uint32_t>(UC_X86_REG_R8D);
const emulator_object<uint32_t> return_length{uc, uc.reg(UC_X86_REG_R9)};
const auto info_class = emu.reg<uint32_t>(x64_register::r10d);
const auto system_information = emu.reg(x64_register::rdx);
const auto system_information_length = emu.reg<uint32_t>(x64_register::r8d);
const emulator_object<uint32_t> return_length{emu, emu.reg(x64_register::r9)};
if (info_class == SystemFlushInformation
|| info_class == SystemHypervisorSharedPageInformation)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
return;
}
@@ -158,11 +158,11 @@ namespace
if (system_information_length != sizeof(SYSTEM_NUMA_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_TOO_SMALL);
emu.reg<uint64_t>(x64_register::rax, STATUS_BUFFER_TOO_SMALL);
return;
}
const emulator_object<SYSTEM_NUMA_INFORMATION> info_obj{uc, system_information};
const emulator_object<SYSTEM_NUMA_INFORMATION> info_obj{emu, system_information};
info_obj.access([&](SYSTEM_NUMA_INFORMATION& info)
{
@@ -172,14 +172,14 @@ namespace
info.Pad[0] = 0xFFF;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
return;
}
if (info_class != SystemBasicInformation && info_class != SystemEmulationBasicInformation)
{
printf("Unsupported system info class: %X\n", info_class);
uc.stop();
emu.stop();
return;
}
@@ -190,11 +190,11 @@ namespace
if (system_information_length != sizeof(SYSTEM_BASIC_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_TOO_SMALL);
emu.reg<uint64_t>(x64_register::rax, STATUS_BUFFER_TOO_SMALL);
return;
}
const emulator_object<SYSTEM_BASIC_INFORMATION> info{uc, system_information};
const emulator_object<SYSTEM_BASIC_INFORMATION> info{emu, system_information};
info.access([&](SYSTEM_BASIC_INFORMATION& basic_info)
{
@@ -210,23 +210,23 @@ namespace
basic_info.NumberOfProcessors = 1;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
}
void handle_NtQuerySystemInformationEx(const unicorn& uc)
void handle_NtQuerySystemInformationEx(x64_emulator& emu)
{
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_R10D);
const auto input_buffer = uc.reg(UC_X86_REG_RDX);
const auto input_buffer_length = uc.reg<uint32_t>(UC_X86_REG_R8D);
const auto system_information = uc.reg(UC_X86_REG_R9);
const auto system_information_length = static_cast<uint32_t>(uc.read_stack(5));
const emulator_object<uint32_t> return_length{uc, uc.read_stack(6)};
const auto info_class = emu.reg<uint32_t>(x64_register::r10d);
const auto input_buffer = emu.reg(x64_register::rdx);
const auto input_buffer_length = emu.reg<uint32_t>(x64_register::r8d);
const auto system_information = emu.reg(x64_register::r9);
const auto system_information_length = static_cast<uint32_t>(emu.read_stack(5));
const emulator_object<uint32_t> return_length{emu, emu.read_stack(6)};
if (info_class == SystemFlushInformation
|| info_class == SystemFeatureConfigurationInformation
|| info_class == SystemFeatureConfigurationSectionInformation)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
return;
}
@@ -234,7 +234,7 @@ namespace
{
void* buffer = calloc(1, input_buffer_length);
void* res_buff = calloc(1, system_information_length);
uc_mem_read(uc, input_buffer, buffer, input_buffer_length);
emu.read_memory(input_buffer, buffer, input_buffer_length);
uint64_t code = 0;
@@ -247,20 +247,20 @@ namespace
if (code == 0)
{
uc_mem_write(uc, system_information, res_buff, return_length.read());
emu.write_memory(system_information, res_buff, return_length.read());
}
free(buffer);
free(res_buff);
uc.reg<uint64_t>(UC_X86_REG_RAX, code);
emu.reg<uint64_t>(x64_register::rax, code);
return;
}
if (info_class != SystemBasicInformation && info_class != SystemEmulationBasicInformation)
{
printf("Unsupported system info ex class: %X\n", info_class);
uc.stop();
emu.stop();
return;
}
@@ -271,11 +271,11 @@ namespace
if (system_information_length != sizeof(SYSTEM_BASIC_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_TOO_SMALL);
emu.reg<uint64_t>(x64_register::rax, STATUS_BUFFER_TOO_SMALL);
return;
}
const emulator_object<SYSTEM_BASIC_INFORMATION> info{uc, system_information};
const emulator_object<SYSTEM_BASIC_INFORMATION> info{emu, system_information};
info.access([&](SYSTEM_BASIC_INFORMATION& basic_info)
{
@@ -291,27 +291,27 @@ namespace
basic_info.NumberOfProcessors = 1;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
}
void handle_NtQueryProcessInformation(const unicorn& uc)
void handle_NtQueryProcessInformation(x64_emulator& emu)
{
const auto process_handle = uc.reg<uint64_t>(UC_X86_REG_R10);
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_EDX);
const auto process_information = uc.reg(UC_X86_REG_R8);
const auto process_information_length = uc.reg<uint32_t>(UC_X86_REG_R9D);
const emulator_object<uint32_t> return_length{uc, uc.read_stack(5)};
const auto process_handle = emu.reg<uint64_t>(x64_register::r10);
const auto info_class = emu.reg<uint32_t>(x64_register::edx);
const auto process_information = emu.reg(x64_register::r8);
const auto process_information_length = emu.reg<uint32_t>(x64_register::r9d);
const emulator_object<uint32_t> return_length{emu, emu.read_stack(5)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class != ProcessCookie)
{
printf("Unsupported process info class: %X\n", info_class);
uc.stop();
emu.stop();
return;
}
@@ -322,27 +322,27 @@ namespace
if (process_information_length != sizeof(uint32_t))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
emu.reg<uint64_t>(x64_register::rax, STATUS_BUFFER_OVERFLOW);
return;
}
const emulator_object<uint32_t> info{uc, process_information};
const emulator_object<uint32_t> info{emu, process_information};
info.write(0x01234567);
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
}
void handle_NtProtectVirtualMemory(const unicorn& uc)
void handle_NtProtectVirtualMemory(x64_emulator& emu)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const emulator_object<uint64_t> base_address{uc, uc.reg(UC_X86_REG_RDX)};
const emulator_object<uint32_t> bytes_to_protect{uc, uc.reg(UC_X86_REG_R8)};
const auto protection = uc.reg<uint32_t>(UC_X86_REG_R9D);
const emulator_object<uint32_t> old_protection{uc, uc.read_stack(5)};
const auto process_handle = emu.reg(x64_register::r10);
const emulator_object<uint64_t> base_address{emu, emu.reg(x64_register::rdx)};
const emulator_object<uint32_t> bytes_to_protect{emu, emu.reg(x64_register::r8)};
const auto protection = emu.reg<uint32_t>(x64_register::r9d);
const emulator_object<uint32_t> old_protection{emu, emu.read_stack(5)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_IMPLEMENTED);
return;
}
@@ -352,27 +352,27 @@ namespace
const auto size = page_align_up(bytes_to_protect.read());
bytes_to_protect.write(static_cast<uint32_t>(size));
const auto current_uc_protection = get_memory_protection(uc, address);
const auto current_protection = map_unicorn_to_nt_protection(current_uc_protection);
const auto current_uc_protection = get_memory_protection(emu, address);
const auto current_protection = map_emulator_to_nt_protection(current_uc_protection);
old_protection.write(current_protection);
const auto requested_protection = map_nt_to_unicorn_protection(protection);
uce(uc_mem_protect(uc, address, size, requested_protection));
const auto requested_protection = map_nt_to_emulator_protection(protection);
emu.protect_memory(address, size, requested_protection);
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
}
void handle_NtAllocateVirtualMemory(const unicorn& uc)
void handle_NtAllocateVirtualMemory(x64_emulator& emu)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const emulator_object<uint64_t> base_address{uc, uc.reg(UC_X86_REG_RDX)};
const emulator_object<uint64_t> bytes_to_allocate{uc, uc.reg(UC_X86_REG_R9)};
//const auto allocation_type = uc.reg<uint32_t>(UC_X86_REG_R9D);
const auto page_protection = static_cast<uint32_t>(uc.read_stack(6));
const auto process_handle = emu.reg(x64_register::r10);
const emulator_object<uint64_t> base_address{emu, emu.reg(x64_register::rdx)};
const emulator_object<uint64_t> bytes_to_allocate{emu, emu.reg(x64_register::r9)};
//const auto allocation_type =emu.reg<uint32_t>(x64_register::r9d);
const auto page_protection = static_cast<uint32_t>(emu.read_stack(6));
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_IMPLEMENTED);
return;
}
@@ -381,7 +381,7 @@ namespace
//allocation_bytes = align_up(allocation_bytes, allocation_granularity);
//bytes_to_allocate.write(allocation_bytes);
const auto protection = map_nt_to_unicorn_protection(page_protection);
const auto protection = map_nt_to_emulator_protection(page_protection);
auto allocate_anywhere = false;
auto allocation_base = base_address.read();
@@ -390,9 +390,9 @@ namespace
allocate_anywhere = true;
allocation_base = allocation_granularity;
}
else if (is_memory_allocated(uc, allocation_base))
else if (is_memory_allocated(emu, allocation_base))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
return;
}
@@ -400,34 +400,42 @@ namespace
while (true)
{
succeeded = uc_mem_map(uc, allocation_base, allocation_bytes, protection) == UC_ERR_OK;
if (succeeded || !allocate_anywhere)
try
{
emu.map_memory(allocation_base, allocation_bytes, protection);
succeeded = true;
break;
}
catch (...)
{
if (!allocate_anywhere)
{
break;
}
allocation_base += allocation_granularity;
allocation_base += allocation_granularity;
}
}
base_address.write(allocation_base);
uc.reg<uint64_t>(UC_X86_REG_RAX, succeeded
? STATUS_SUCCESS
: STATUS_NOT_SUPPORTED // No idea what the correct code is
emu.reg<uint64_t>(x64_register::rax, succeeded
? STATUS_SUCCESS
: STATUS_NOT_SUPPORTED // No idea what the correct code is
);
}
void handle_NtAllocateVirtualMemoryEx(const unicorn& uc)
void handle_NtAllocateVirtualMemoryEx(x64_emulator& emu)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const emulator_object<uint64_t> base_address{uc, uc.reg(UC_X86_REG_RDX)};
const emulator_object<uint64_t> bytes_to_allocate{uc, uc.reg(UC_X86_REG_R8)};
//const auto allocation_type = uc.reg<uint32_t>(UC_X86_REG_R9D);
const auto page_protection = static_cast<uint32_t>(uc.read_stack(5));
const auto process_handle = emu.reg(x64_register::r10);
const emulator_object<uint64_t> base_address{emu, emu.reg(x64_register::rdx)};
const emulator_object<uint64_t> bytes_to_allocate{emu, emu.reg(x64_register::r8)};
//const auto allocation_type =emu.reg<uint32_t>(x64_register::r9d);
const auto page_protection = static_cast<uint32_t>(emu.read_stack(5));
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_IMPLEMENTED);
return;
}
@@ -436,7 +444,7 @@ namespace
//allocation_bytes = align_up(allocation_bytes, allocation_granularity);
//bytes_to_allocate.write(allocation_bytes);
const auto protection = map_nt_to_unicorn_protection(page_protection);
const auto protection = map_nt_to_emulator_protection(page_protection);
auto allocate_anywhere = false;
auto allocation_base = base_address.read();
@@ -445,9 +453,9 @@ namespace
allocate_anywhere = true;
allocation_base = allocation_granularity;
}
else if (is_memory_allocated(uc, allocation_base))
else if (is_memory_allocated(emu, allocation_base))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
emu.reg<uint64_t>(x64_register::rax, STATUS_SUCCESS);
return;
}
@@ -455,51 +463,69 @@ namespace
while (true)
{
succeeded = uc_mem_map(uc, allocation_base, allocation_bytes, protection) == UC_ERR_OK;
if (succeeded || !allocate_anywhere)
try
{
emu.map_memory(allocation_base, allocation_bytes, protection);
succeeded = true;
break;
}
catch (...)
{
succeeded = false;
if (!allocate_anywhere)
{
break;
}
allocation_base += allocation_granularity;
allocation_base += allocation_granularity;
}
}
base_address.write(allocation_base);
uc.reg<uint64_t>(UC_X86_REG_RAX, succeeded
? STATUS_SUCCESS
: STATUS_NOT_SUPPORTED // No idea what the correct code is
emu.reg<uint64_t>(x64_register::rax, succeeded
? STATUS_SUCCESS
: STATUS_NOT_SUPPORTED // No idea what the correct code is
);
}
void handle_NtFreeVirtualMemory(const unicorn& uc)
void handle_NtFreeVirtualMemory(x64_emulator& emu)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const emulator_object<uint64_t> base_address{uc, uc.reg(UC_X86_REG_RDX)};
const emulator_object<uint64_t> bytes_to_allocate{uc, uc.reg(UC_X86_REG_R8)};
const auto process_handle = emu.reg(x64_register::r10);
const emulator_object<uint64_t> base_address{emu, emu.reg(x64_register::rdx)};
const emulator_object<uint64_t> bytes_to_allocate{emu, emu.reg(x64_register::r8)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_IMPLEMENTED);
return;
}
const auto allocation_base = base_address.read();
const auto allocation_size = bytes_to_allocate.read();
const auto succeeded = uc_mem_unmap(uc, allocation_base, allocation_size) == UC_ERR_OK;
bool succeeded = false;
try
{
emu.unmap_memory(allocation_base, allocation_size);
succeeded = true;
}
catch (...)
{
succeeded = false;
}
uc.reg<uint64_t>(UC_X86_REG_RAX, succeeded
? STATUS_SUCCESS
: STATUS_NOT_SUPPORTED // No idea what the correct code is
emu.reg<uint64_t>(x64_register::rax, succeeded
? STATUS_SUCCESS
: STATUS_NOT_SUPPORTED // No idea what the correct code is
);
}
}
void handle_syscall(x64_emulator& emu, process_context& context)
{
const auto address = uc.reg(UC_X86_REG_RIP);
const auto syscall_id = uc.reg<uint32_t>(UC_X86_REG_EAX);
const auto address = emu.reg(x64_register::rip);
const auto syscall_id = emu.reg<uint32_t>(x64_register::eax);
printf("Handling syscall: %X (%llX)\n", syscall_id, address);
@@ -508,56 +534,56 @@ void handle_syscall(x64_emulator& emu, process_context& context)
switch (syscall_id)
{
case 0x12:
handle_NtOpenKey(uc);
handle_NtOpenKey(emu);
break;
case 0x18:
handle_NtAllocateVirtualMemory(uc);
handle_NtAllocateVirtualMemory(emu);
break;
case 0x1E:
handle_NtFreeVirtualMemory(uc);
handle_NtFreeVirtualMemory(emu);
break;
case 0x19:
handle_NtQueryProcessInformation(uc);
handle_NtQueryProcessInformation(emu);
break;
case 0x23:
handle_NtQueryVirtualMemory(uc, context);
handle_NtQueryVirtualMemory(emu, context);
break;
case 0x31:
handle_NtQueryPerformanceCounter(uc);
handle_NtQueryPerformanceCounter(emu);
break;
case 0x36:
handle_NtQuerySystemInformation(uc);
handle_NtQuerySystemInformation(emu);
break;
case 0x48:
handle_NtCreateEvent(uc, context);
handle_NtCreateEvent(emu, context);
break;
case 0x50:
handle_NtProtectVirtualMemory(uc);
handle_NtProtectVirtualMemory(emu);
break;
case 0x5E:
handle_NtTraceEvent(uc);
handle_NtTraceEvent(emu);
break;
case 0x78:
handle_NtAllocateVirtualMemoryEx(uc);
handle_NtAllocateVirtualMemoryEx(emu);
break;
case 0xB2:
handle_NtCreateIoCompletion(uc);
handle_NtCreateIoCompletion(emu);
break;
case 0x11A:
handle_NtManageHotPatch(uc);
handle_NtManageHotPatch(emu);
break;
case 0x16E:
handle_NtQuerySystemInformationEx(uc);
handle_NtQuerySystemInformationEx(emu);
break;
default:
printf("Unhandled syscall: %X\n", syscall_id);
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
uc.stop();
emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_IMPLEMENTED);
emu.stop();
break;
}
}
catch (...)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_UNSUCCESSFUL);
emu.reg<uint64_t>(x64_register::rax, STATUS_UNSUCCESSFUL);
}
}