Split up files

This commit is contained in:
momo5502
2024-08-19 18:58:23 +02:00
parent 0c8766762b
commit a6405842a2
6 changed files with 683 additions and 655 deletions

View File

@@ -1,5 +1,11 @@
#include "std_include.hpp"
#include "unicorn.hpp"
#include "memory_utils.hpp"
#include "unicorn_utils.hpp"
#include "process_context.hpp"
#include "syscalls.hpp"
#define GS_SEGMENT_ADDR 0x6000000ULL
#define GS_SEGMENT_SIZE (20 << 20) // 20 MB
@@ -10,269 +16,8 @@
#define KUSD_ADDRESS 0x7ffe0000
#include "unicorn.hpp"
#include <utils/finally.hpp>
namespace
{
bool is_within_start_and_end(const uint64_t value, const uint64_t start, const uint64_t end)
{
return value >= start && value < end;
}
bool is_within_start_and_length(const uint64_t value, const uint64_t start, const uint64_t length)
{
return is_within_start_and_end(value, start, start + length);
}
uint64_t align_down(const uint64_t value, const uint64_t alignment)
{
return value & ~(alignment - 1);
}
uint64_t align_up(const uint64_t value, const uint64_t alignment)
{
return align_down(value + (alignment - 1), alignment);
}
uint64_t page_align_down(const uint64_t value)
{
return align_down(value, 0x1000);
}
uint64_t page_align_up(const uint64_t value)
{
return align_up(value, 0x1000);
}
template <typename T>
class unicorn_object
{
public:
unicorn_object() = default;
unicorn_object(const unicorn& uc, uint64_t address)
: uc_(&uc)
, address_(address)
{
}
uint64_t value() const
{
return this->address_;
}
uint64_t size() const
{
return sizeof(T);
}
uint64_t end() const
{
return this->value() + this->size();
}
T* ptr() const
{
return reinterpret_cast<T*>(this->address_);
}
operator bool() const
{
return this->address_ != 0;
}
T read() const
{
T obj{};
e(uc_mem_read(*this->uc_, this->address_, &obj, sizeof(obj)));
return obj;
}
void write(const T& value) const
{
e(uc_mem_write(*this->uc_, this->address_, &value, sizeof(value)));
}
template <typename F>
void access(const F& accessor) const
{
T obj{};
e(uc_mem_read(*this->uc_, this->address_, &obj, sizeof(obj)));
accessor(obj);
this->write(obj);
}
private:
const unicorn* uc_{};
uint64_t address_{};
};
class unicorn_allocator
{
public:
unicorn_allocator() = default;
unicorn_allocator(const unicorn& uc, const uint64_t address, const uint64_t size)
: uc_(&uc)
, address_(address)
, size_(size)
, active_address_(address)
{
}
uint64_t reserve(const uint64_t count, const uint64_t alignment = 1)
{
const auto potential_start = align_up(this->active_address_, alignment);
const auto potential_end = potential_start + count;
const auto total_end = this->address_ + this->size_;
if (potential_end > total_end)
{
throw std::runtime_error("Out of memory");
}
this->active_address_ = potential_end;
return potential_start;
}
template <typename T>
unicorn_object<T> reserve()
{
const auto potential_start = this->reserve(sizeof(T), alignof(T));
return unicorn_object<T>(*this->uc_, potential_start);
}
void make_unicode_string(UNICODE_STRING& result, const std::wstring_view str)
{
constexpr auto element_size = sizeof(str[0]);
constexpr auto required_alignment = alignof(decltype(str[0]));
const auto total_length = str.size() * element_size;
const auto string_buffer = this->reserve(total_length, required_alignment);
e(uc_mem_write(*this->uc_, string_buffer, str.data(), total_length));
result.Buffer = reinterpret_cast<PWCH>(string_buffer);
result.Length = static_cast<USHORT>(total_length);
result.MaximumLength = result.Length;
}
unicorn_object<UNICODE_STRING> make_unicode_string(const std::wstring_view str)
{
const auto unicode_string = this->reserve<UNICODE_STRING>();
unicode_string.access([&](UNICODE_STRING& unicode_str)
{
this->make_unicode_string(unicode_str, str);
});
return unicode_string;
}
private:
const unicorn* uc_{};
uint64_t address_{};
uint64_t size_{};
uint64_t active_address_{0};
};
class unicorn_hook
{
public:
using function = std::function<void(const unicorn& uc, uint64_t address, uint32_t size)>;
template <typename... Args>
unicorn_hook(const unicorn& uc, const int type, const uint64_t begin, const uint64_t end, function callback,
Args... args)
: uc_(&uc)
{
this->function_ = std::make_unique<internal_function>(
[c = std::move(callback), &uc](const uint64_t address, const uint32_t size)
{
c(uc, address, size);
});
void* handler = +[](uc_engine*, const uint64_t address, const uint32_t size,
void* user_data)
{
(*static_cast<internal_function*>(user_data))(address, size);
};
if (type == UC_HOOK_INSN)
{
handler = +[](uc_engine* uc, void* user_data)
{
uint64_t rip{};
uc_reg_read(uc, UC_X86_REG_RIP, &rip);
(*static_cast<internal_function*>(user_data))(rip, 0);
};
}
if (type == UC_HOOK_MEM_READ)
{
handler = +[](uc_engine*, const uc_mem_type /*type*/, const uint64_t address, const int size,
const int64_t /*value*/, void* user_data)
{
(*static_cast<internal_function*>(user_data))(address, size);
};
}
e(uc_hook_add(*this->uc_, &this->hook_, type, handler, this->function_.get(), begin, end, args...));
}
unicorn_hook(const unicorn_hook&) = delete;
unicorn_hook& operator=(const unicorn_hook&) = delete;
unicorn_hook(unicorn_hook&& obj) noexcept
{
this->operator=(std::move(obj));
}
unicorn_hook& operator=(unicorn_hook&& obj) noexcept
{
if (this != &obj)
{
this->remove();
this->uc_ = obj.uc_;
this->hook_ = obj.hook_;
this->function_ = std::move(obj.function_);
obj.hook_ = {};
}
return *this;
}
~unicorn_hook()
{
this->remove();
}
void remove()
{
if (this->hook_)
{
uc_hook_del(*this->uc_, this->hook_);
this->hook_ = {};
}
this->function_ = {};
}
private:
using internal_function = std::function<void(uint64_t address, uint32_t size)>;
const unicorn* uc_{};
uc_hook hook_{};
std::unique_ptr<internal_function> function_{};
};
void setup_stack(const unicorn& uc, uint64_t stack_base, size_t stack_size)
{
e(uc_mem_map(uc, stack_base, stack_size, UC_PROT_READ | UC_PROT_WRITE));
@@ -314,13 +59,6 @@ namespace
});
}
struct mapped_binary
{
uint64_t image_base{};
uint64_t size_of_image{};
std::unordered_map<std::string, uint64_t> exports{};
};
mapped_binary map_module(const unicorn& uc, const std::vector<uint8_t>& module_data,
const std::string& name)
{
@@ -419,37 +157,6 @@ namespace
return binary;
}
struct event
{
bool signaled{};
EVENT_TYPE type{};
bool is_signaled()
{
const auto res = this->signaled;
if (this->type == SynchronizationEvent)
{
this->signaled = false;
}
return res;
}
};
struct process_context
{
unicorn_object<TEB> teb{};
unicorn_object<PEB> peb{};
unicorn_object<RTL_USER_PROCESS_PARAMETERS> process_params{};
mapped_binary executable{};
mapped_binary ntdll{};
std::vector<event> events{};
unicorn_allocator gs_segment{};
};
process_context setup_teb_and_peb(const unicorn& uc)
{
setup_stack(uc, STACK_ADDRESS, STACK_SIZE);
@@ -515,318 +222,6 @@ namespace
return map_module(uc, data, file.generic_string());
}
void handle_NtQueryPerformanceCounter(const unicorn& uc)
{
const unicorn_object<LARGE_INTEGER> performance_counter{uc, uc.reg(UC_X86_REG_R10)};
const unicorn_object<LARGE_INTEGER> performance_frequency{uc, uc.reg(UC_X86_REG_RDX)};
try
{
if (performance_counter)
{
performance_counter.access([](LARGE_INTEGER& value)
{
QueryPerformanceCounter(&value);
});
}
if (performance_frequency)
{
performance_frequency.access([](LARGE_INTEGER& value)
{
QueryPerformanceFrequency(&value);
});
}
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
catch (...)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_ACCESS_VIOLATION);
}
}
uint32_t get_memory_protection(const unicorn& uc, uint64_t address)
{
uint32_t count{};
uc_mem_region* regions{};
e(uc_mem_regions(uc, &regions, &count));
const auto _ = utils::finally([&]
{
uc_free(regions);
});
for (const auto& region : std::span(regions, count))
{
if (is_within_start_and_end(address, region.begin, region.end))
{
return region.perms;
}
}
return UC_PROT_NONE;
}
uint32_t map_nt_to_unicorn_protection(const uint32_t nt_protection)
{
switch (nt_protection)
{
case PAGE_NOACCESS:
return UC_PROT_NONE;
case PAGE_READONLY:
return UC_PROT_READ;
case PAGE_READWRITE:
case PAGE_WRITECOPY:
return UC_PROT_READ | UC_PROT_WRITE;
case PAGE_EXECUTE:
case PAGE_EXECUTE_READ:
return UC_PROT_READ | UC_PROT_EXEC;
case PAGE_EXECUTE_READWRITE:
case PAGE_EXECUTE_WRITECOPY:
default:
return UC_PROT_ALL;
}
}
uint32_t map_unicorn_to_nt_protection(const uint32_t unicorn_protection)
{
const bool has_exec = unicorn_protection & UC_PROT_EXEC;
const bool has_read = unicorn_protection & UC_PROT_READ;
const bool has_write = unicorn_protection & UC_PROT_WRITE;
if (!has_read)
{
return PAGE_NOACCESS;
}
if (has_exec && has_write)
{
return PAGE_EXECUTE_READWRITE;
}
if (has_exec)
{
return PAGE_EXECUTE_READ;
}
if (has_write)
{
return PAGE_READWRITE;
}
return PAGE_READONLY;
}
void handle_NtManageHotPatch(const unicorn& uc)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
}
void handle_NtOpenKey(const unicorn& uc)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
}
void handle_NtCreateEvent(const unicorn& uc, process_context& context)
{
const unicorn_object<uint64_t> event_handle{uc, uc.reg(UC_X86_REG_R10)};
const auto object_attributes = uc.reg(UC_X86_REG_R8);
const auto event_type = uc.reg<EVENT_TYPE>(UC_X86_REG_R9D);
const auto initial_state = static_cast<BOOLEAN>(uc.read_stack(5));
if (object_attributes)
{
puts("Unsupported object attributes");
uc.stop();
return;
}
const uint64_t index = context.events.size();
event_handle.write(index);
context.events.emplace_back(initial_state != FALSE, event_type);
static_assert(sizeof(EVENT_TYPE) == sizeof(uint32_t));
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtQueryVirtualMemory(const unicorn& uc, const process_context& context)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const auto base_address = uc.reg(UC_X86_REG_RDX);
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_R8D);
const auto memory_information = uc.reg(UC_X86_REG_R9);
const auto memory_information_length = static_cast<uint32_t>(uc.read_stack(5));
const unicorn_object<uint32_t> return_length{uc, uc.read_stack(6)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class == MemoryWorkingSetExInformation)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class != MemoryImageInformation)
{
printf("Unsupported memory info class: %X\n", info_class);
uc.stop();
return;
}
if (return_length)
{
return_length.write(sizeof(MEMORY_IMAGE_INFORMATION));
}
if (memory_information_length != sizeof(MEMORY_IMAGE_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
return;
}
if (!is_within_start_and_length(base_address, context.ntdll.image_base, context.ntdll.size_of_image))
{
puts("Bad image request");
uc.stop();
return;
}
const unicorn_object<MEMORY_IMAGE_INFORMATION> info{uc, memory_information};
info.access([&](MEMORY_IMAGE_INFORMATION& image_info)
{
image_info.ImageBase = reinterpret_cast<void*>(context.ntdll.image_base);
image_info.SizeOfImage = context.ntdll.size_of_image;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtQuerySystemInformation(const unicorn& uc, const process_context& context)
{
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_R10D);
const auto system_information = uc.reg(UC_X86_REG_RDX);
const auto system_information_length = uc.reg<uint32_t>(UC_X86_REG_R8D);
const unicorn_object<uint32_t> return_length{uc, uc.reg(UC_X86_REG_R9)};
if (info_class == SystemFlushInformation)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
return;
}
if (info_class != SystemBasicInformation && info_class != SystemEmulationBasicInformation)
{
printf("Unsupported system info class: %X\n", info_class);
uc.stop();
return;
}
if (return_length)
{
return_length.write(sizeof(SYSTEM_BASIC_INFORMATION));
}
if (system_information_length != sizeof(SYSTEM_BASIC_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
return;
}
const unicorn_object<SYSTEM_BASIC_INFORMATION> info{uc, system_information};
info.access([&](SYSTEM_BASIC_INFORMATION& basic_info)
{
basic_info.Reserved = 0;
basic_info.TimerResolution = 0x0002625a;
basic_info.PageSize = 0x1000;
basic_info.LowestPhysicalPageNumber = 0x00000001;
basic_info.HighestPhysicalPageNumber = 0x00c9c7ff;
basic_info.AllocationGranularity = 0x10000;
basic_info.MinimumUserModeAddress = 0x0000000000010000;
basic_info.MaximumUserModeAddress = 0x00007ffffffeffff;
basic_info.ActiveProcessorsAffinityMask = 0x0000000000000fff;
basic_info.NumberOfProcessors = 1;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtQueryProcessInformation(const unicorn& uc, const process_context& context)
{
const auto process_handle = uc.reg<uint64_t>(UC_X86_REG_R10);
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_EDX);
const auto process_information = uc.reg(UC_X86_REG_R8);
const auto process_information_length = uc.reg<uint32_t>(UC_X86_REG_R9D);
const unicorn_object<uint32_t> return_length{uc, uc.read_stack(5)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class != ProcessCookie)
{
printf("Unsupported process info class: %X\n", info_class);
uc.stop();
return;
}
if (return_length)
{
return_length.write(sizeof(uint32_t));
}
if (process_information_length != sizeof(uint32_t))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
return;
}
const unicorn_object<uint32_t> info{uc, process_information};
info.write(0x01234567);
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtProtectVirtualMemory(const unicorn& uc)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const unicorn_object<uint64_t> base_address{uc, uc.reg(UC_X86_REG_RDX)};
const unicorn_object<uint32_t> bytes_to_protect{uc, uc.reg(UC_X86_REG_R8)};
const auto protection = uc.reg<uint32_t>(UC_X86_REG_R9D);
const unicorn_object<uint32_t> old_protection{uc, uc.read_stack(5)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
const auto address = page_align_down(base_address.read());
base_address.write(address);
const auto size = page_align_up(bytes_to_protect.read());
bytes_to_protect.write(static_cast<uint32_t>(size));
const auto current_uc_protection = get_memory_protection(uc, address);
const auto current_protection = map_unicorn_to_nt_protection(current_uc_protection);
old_protection.write(current_protection);
const auto requested_protection = map_nt_to_unicorn_protection(protection);
e(uc_mem_protect(uc, address, size, requested_protection));
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void run()
{
const unicorn uc{UC_ARCH_X86, UC_MODE_64};
@@ -876,51 +271,9 @@ namespace
}
unicorn_hook hook(uc, UC_HOOK_INSN, 0, std::numeric_limits<uint64_t>::max(),
[&](const unicorn&, const uint64_t address, const uint32_t /*size*/)
[&](const unicorn&, const uint64_t, const uint32_t)
{
const auto syscall_id = uc.reg<uint32_t>(UC_X86_REG_EAX);
printf("Handling syscall: %X (%llX)\n", syscall_id, address);
try
{
switch (syscall_id)
{
case 0x12:
handle_NtOpenKey(uc);
break;
case 0x19:
handle_NtQueryProcessInformation(uc, context);
break;
case 0x23:
handle_NtQueryVirtualMemory(uc, context);
break;
case 0x31:
handle_NtQueryPerformanceCounter(uc);
break;
case 0x36:
handle_NtQuerySystemInformation(uc, context);
break;
case 0x48:
handle_NtCreateEvent(uc, context);
break;
case 0x50:
handle_NtProtectVirtualMemory(uc);
break;
case 0x11A:
handle_NtManageHotPatch(uc);
break;
default:
printf("Unhandled syscall: %X\n", syscall_id);
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
uc.stop();
break;
}
}
catch (...)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_UNSUCCESSFUL);
}
handle_syscall(uc, context);
}, UC_X86_INS_SYSCALL);
unicorn_hook hook3(uc, UC_HOOK_MEM_READ, context.peb.value(), context.peb.end(),

View File

@@ -0,0 +1,105 @@
#pragma once
#include <cstdint>
#include <utils/finally.hpp>
inline bool is_within_start_and_end(const uint64_t value, const uint64_t start, const uint64_t end)
{
return value >= start && value < end;
}
inline bool is_within_start_and_length(const uint64_t value, const uint64_t start, const uint64_t length)
{
return is_within_start_and_end(value, start, start + length);
}
inline uint64_t align_down(const uint64_t value, const uint64_t alignment)
{
return value & ~(alignment - 1);
}
inline uint64_t align_up(const uint64_t value, const uint64_t alignment)
{
return align_down(value + (alignment - 1), alignment);
}
inline uint64_t page_align_down(const uint64_t value)
{
return align_down(value, 0x1000);
}
inline uint64_t page_align_up(const uint64_t value)
{
return align_up(value, 0x1000);
}
inline uint32_t get_memory_protection(const unicorn& uc, uint64_t address)
{
uint32_t count{};
uc_mem_region* regions{};
e(uc_mem_regions(uc, &regions, &count));
const auto _ = utils::finally([&]
{
uc_free(regions);
});
for (const auto& region : std::span(regions, count))
{
if (is_within_start_and_end(address, region.begin, region.end))
{
return region.perms;
}
}
return UC_PROT_NONE;
}
inline uint32_t map_nt_to_unicorn_protection(const uint32_t nt_protection)
{
switch (nt_protection)
{
case PAGE_NOACCESS:
return UC_PROT_NONE;
case PAGE_READONLY:
return UC_PROT_READ;
case PAGE_READWRITE:
case PAGE_WRITECOPY:
return UC_PROT_READ | UC_PROT_WRITE;
case PAGE_EXECUTE:
case PAGE_EXECUTE_READ:
return UC_PROT_READ | UC_PROT_EXEC;
case PAGE_EXECUTE_READWRITE:
case PAGE_EXECUTE_WRITECOPY:
default:
return UC_PROT_ALL;
}
}
inline uint32_t map_unicorn_to_nt_protection(const uint32_t unicorn_protection)
{
const bool has_exec = unicorn_protection & UC_PROT_EXEC;
const bool has_read = unicorn_protection & UC_PROT_READ;
const bool has_write = unicorn_protection & UC_PROT_WRITE;
if (!has_read)
{
return PAGE_NOACCESS;
}
if (has_exec && has_write)
{
return PAGE_EXECUTE_READWRITE;
}
if (has_exec)
{
return PAGE_EXECUTE_READ;
}
if (has_write)
{
return PAGE_READWRITE;
}
return PAGE_READONLY;
}

View File

@@ -0,0 +1,40 @@
#pragma once
#include "unicorn_utils.hpp"
struct mapped_binary
{
uint64_t image_base{};
uint64_t size_of_image{};
std::unordered_map<std::string, uint64_t> exports{};
};
struct event
{
bool signaled{};
EVENT_TYPE type{};
bool is_signaled()
{
const auto res = this->signaled;
if (this->type == SynchronizationEvent)
{
this->signaled = false;
}
return res;
}
};
struct process_context
{
unicorn_object<TEB> teb{};
unicorn_object<PEB> peb{};
unicorn_object<RTL_USER_PROCESS_PARAMETERS> process_params{};
mapped_binary executable{};
mapped_binary ntdll{};
std::vector<event> events{};
unicorn_allocator gs_segment{};
};

293
src/emulator/syscalls.cpp Normal file
View File

@@ -0,0 +1,293 @@
#include "std_include.hpp"
#include "syscalls.hpp"
namespace
{
void handle_NtQueryPerformanceCounter(const unicorn& uc)
{
const unicorn_object<LARGE_INTEGER> performance_counter{uc, uc.reg(UC_X86_REG_R10)};
const unicorn_object<LARGE_INTEGER> performance_frequency{uc, uc.reg(UC_X86_REG_RDX)};
try
{
if (performance_counter)
{
performance_counter.access([](LARGE_INTEGER& value)
{
QueryPerformanceCounter(&value);
});
}
if (performance_frequency)
{
performance_frequency.access([](LARGE_INTEGER& value)
{
QueryPerformanceFrequency(&value);
});
}
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
catch (...)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_ACCESS_VIOLATION);
}
}
void handle_NtManageHotPatch(const unicorn& uc)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
}
void handle_NtOpenKey(const unicorn& uc)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
}
void handle_NtCreateEvent(const unicorn& uc, process_context& context)
{
const unicorn_object<uint64_t> event_handle{uc, uc.reg(UC_X86_REG_R10)};
const auto object_attributes = uc.reg(UC_X86_REG_R8);
const auto event_type = uc.reg<EVENT_TYPE>(UC_X86_REG_R9D);
const auto initial_state = static_cast<BOOLEAN>(uc.read_stack(5));
if (object_attributes)
{
puts("Unsupported object attributes");
uc.stop();
return;
}
const uint64_t index = context.events.size();
event_handle.write(index);
context.events.emplace_back(initial_state != FALSE, event_type);
static_assert(sizeof(EVENT_TYPE) == sizeof(uint32_t));
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtQueryVirtualMemory(const unicorn& uc, const process_context& context)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const auto base_address = uc.reg(UC_X86_REG_RDX);
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_R8D);
const auto memory_information = uc.reg(UC_X86_REG_R9);
const auto memory_information_length = static_cast<uint32_t>(uc.read_stack(5));
const unicorn_object<uint32_t> return_length{uc, uc.read_stack(6)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class == MemoryWorkingSetExInformation)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class != MemoryImageInformation)
{
printf("Unsupported memory info class: %X\n", info_class);
uc.stop();
return;
}
if (return_length)
{
return_length.write(sizeof(MEMORY_IMAGE_INFORMATION));
}
if (memory_information_length != sizeof(MEMORY_IMAGE_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
return;
}
if (!is_within_start_and_length(base_address, context.ntdll.image_base, context.ntdll.size_of_image))
{
puts("Bad image request");
uc.stop();
return;
}
const unicorn_object<MEMORY_IMAGE_INFORMATION> info{uc, memory_information};
info.access([&](MEMORY_IMAGE_INFORMATION& image_info)
{
image_info.ImageBase = reinterpret_cast<void*>(context.ntdll.image_base);
image_info.SizeOfImage = context.ntdll.size_of_image;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtQuerySystemInformation(const unicorn& uc, const process_context& context)
{
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_R10D);
const auto system_information = uc.reg(UC_X86_REG_RDX);
const auto system_information_length = uc.reg<uint32_t>(UC_X86_REG_R8D);
const unicorn_object<uint32_t> return_length{uc, uc.reg(UC_X86_REG_R9)};
if (info_class == SystemFlushInformation)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
return;
}
if (info_class != SystemBasicInformation && info_class != SystemEmulationBasicInformation)
{
printf("Unsupported system info class: %X\n", info_class);
uc.stop();
return;
}
if (return_length)
{
return_length.write(sizeof(SYSTEM_BASIC_INFORMATION));
}
if (system_information_length != sizeof(SYSTEM_BASIC_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
return;
}
const unicorn_object<SYSTEM_BASIC_INFORMATION> info{uc, system_information};
info.access([&](SYSTEM_BASIC_INFORMATION& basic_info)
{
basic_info.Reserved = 0;
basic_info.TimerResolution = 0x0002625a;
basic_info.PageSize = 0x1000;
basic_info.LowestPhysicalPageNumber = 0x00000001;
basic_info.HighestPhysicalPageNumber = 0x00c9c7ff;
basic_info.AllocationGranularity = 0x10000;
basic_info.MinimumUserModeAddress = 0x0000000000010000;
basic_info.MaximumUserModeAddress = 0x00007ffffffeffff;
basic_info.ActiveProcessorsAffinityMask = 0x0000000000000fff;
basic_info.NumberOfProcessors = 1;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtQueryProcessInformation(const unicorn& uc, const process_context& context)
{
const auto process_handle = uc.reg<uint64_t>(UC_X86_REG_R10);
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_EDX);
const auto process_information = uc.reg(UC_X86_REG_R8);
const auto process_information_length = uc.reg<uint32_t>(UC_X86_REG_R9D);
const unicorn_object<uint32_t> return_length{uc, uc.read_stack(5)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class != ProcessCookie)
{
printf("Unsupported process info class: %X\n", info_class);
uc.stop();
return;
}
if (return_length)
{
return_length.write(sizeof(uint32_t));
}
if (process_information_length != sizeof(uint32_t))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
return;
}
const unicorn_object<uint32_t> info{uc, process_information};
info.write(0x01234567);
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtProtectVirtualMemory(const unicorn& uc)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const unicorn_object<uint64_t> base_address{uc, uc.reg(UC_X86_REG_RDX)};
const unicorn_object<uint32_t> bytes_to_protect{uc, uc.reg(UC_X86_REG_R8)};
const auto protection = uc.reg<uint32_t>(UC_X86_REG_R9D);
const unicorn_object<uint32_t> old_protection{uc, uc.read_stack(5)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
const auto address = page_align_down(base_address.read());
base_address.write(address);
const auto size = page_align_up(bytes_to_protect.read());
bytes_to_protect.write(static_cast<uint32_t>(size));
const auto current_uc_protection = get_memory_protection(uc, address);
const auto current_protection = map_unicorn_to_nt_protection(current_uc_protection);
old_protection.write(current_protection);
const auto requested_protection = map_nt_to_unicorn_protection(protection);
e(uc_mem_protect(uc, address, size, requested_protection));
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
}
void handle_syscall(const unicorn& uc, process_context& context)
{
const auto address = uc.reg(UC_X86_REG_RIP);
const auto syscall_id = uc.reg<uint32_t>(UC_X86_REG_EAX);
printf("Handling syscall: %X (%llX)\n", syscall_id, address);
try
{
switch (syscall_id)
{
case 0x12:
handle_NtOpenKey(uc);
break;
case 0x19:
handle_NtQueryProcessInformation(uc, context);
break;
case 0x23:
handle_NtQueryVirtualMemory(uc, context);
break;
case 0x31:
handle_NtQueryPerformanceCounter(uc);
break;
case 0x36:
handle_NtQuerySystemInformation(uc, context);
break;
case 0x48:
handle_NtCreateEvent(uc, context);
break;
case 0x50:
handle_NtProtectVirtualMemory(uc);
break;
case 0x11A:
handle_NtManageHotPatch(uc);
break;
default:
printf("Unhandled syscall: %X\n", syscall_id);
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
uc.stop();
break;
}
}
catch (...)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_UNSUCCESSFUL);
}
}

View File

@@ -0,0 +1,6 @@
#pragma once
#include "unicorn.hpp"
#include "process_context.hpp"
void handle_syscall(const unicorn& uc, process_context& context);

View File

@@ -0,0 +1,231 @@
#pragma once
#include "unicorn.hpp"
#include "memory_utils.hpp"
template <typename T>
class unicorn_object
{
public:
unicorn_object() = default;
unicorn_object(const unicorn& uc, uint64_t address)
: uc_(&uc)
, address_(address)
{
}
uint64_t value() const
{
return this->address_;
}
uint64_t size() const
{
return sizeof(T);
}
uint64_t end() const
{
return this->value() + this->size();
}
T* ptr() const
{
return reinterpret_cast<T*>(this->address_);
}
operator bool() const
{
return this->address_ != 0;
}
T read() const
{
T obj{};
e(uc_mem_read(*this->uc_, this->address_, &obj, sizeof(obj)));
return obj;
}
void write(const T& value) const
{
e(uc_mem_write(*this->uc_, this->address_, &value, sizeof(value)));
}
template <typename F>
void access(const F& accessor) const
{
T obj{};
e(uc_mem_read(*this->uc_, this->address_, &obj, sizeof(obj)));
accessor(obj);
this->write(obj);
}
private:
const unicorn* uc_{};
uint64_t address_{};
};
class unicorn_allocator
{
public:
unicorn_allocator() = default;
unicorn_allocator(const unicorn& uc, const uint64_t address, const uint64_t size)
: uc_(&uc)
, address_(address)
, size_(size)
, active_address_(address)
{
}
uint64_t reserve(const uint64_t count, const uint64_t alignment = 1)
{
const auto potential_start = align_up(this->active_address_, alignment);
const auto potential_end = potential_start + count;
const auto total_end = this->address_ + this->size_;
if (potential_end > total_end)
{
throw std::runtime_error("Out of memory");
}
this->active_address_ = potential_end;
return potential_start;
}
template <typename T>
unicorn_object<T> reserve()
{
const auto potential_start = this->reserve(sizeof(T), alignof(T));
return unicorn_object<T>(*this->uc_, potential_start);
}
void make_unicode_string(UNICODE_STRING& result, const std::wstring_view str)
{
constexpr auto element_size = sizeof(str[0]);
constexpr auto required_alignment = alignof(decltype(str[0]));
const auto total_length = str.size() * element_size;
const auto string_buffer = this->reserve(total_length, required_alignment);
e(uc_mem_write(*this->uc_, string_buffer, str.data(), total_length));
result.Buffer = reinterpret_cast<PWCH>(string_buffer);
result.Length = static_cast<USHORT>(total_length);
result.MaximumLength = result.Length;
}
unicorn_object<UNICODE_STRING> make_unicode_string(const std::wstring_view str)
{
const auto unicode_string = this->reserve<UNICODE_STRING>();
unicode_string.access([&](UNICODE_STRING& unicode_str)
{
this->make_unicode_string(unicode_str, str);
});
return unicode_string;
}
private:
const unicorn* uc_{};
uint64_t address_{};
uint64_t size_{};
uint64_t active_address_{ 0 };
};
class unicorn_hook
{
public:
using function = std::function<void(const unicorn& uc, uint64_t address, uint32_t size)>;
template <typename... Args>
unicorn_hook(const unicorn& uc, const int type, const uint64_t begin, const uint64_t end, function callback,
Args... args)
: uc_(&uc)
{
this->function_ = std::make_unique<internal_function>(
[c = std::move(callback), &uc](const uint64_t address, const uint32_t size)
{
c(uc, address, size);
});
void* handler = +[](uc_engine*, const uint64_t address, const uint32_t size,
void* user_data)
{
(*static_cast<internal_function*>(user_data))(address, size);
};
if (type == UC_HOOK_INSN)
{
handler = +[](uc_engine* uc, void* user_data)
{
uint64_t rip{};
uc_reg_read(uc, UC_X86_REG_RIP, &rip);
(*static_cast<internal_function*>(user_data))(rip, 0);
};
}
if (type == UC_HOOK_MEM_READ)
{
handler = +[](uc_engine*, const uc_mem_type /*type*/, const uint64_t address, const int size,
const int64_t /*value*/, void* user_data)
{
(*static_cast<internal_function*>(user_data))(address, size);
};
}
e(uc_hook_add(*this->uc_, &this->hook_, type, handler, this->function_.get(), begin, end, args...));
}
unicorn_hook(const unicorn_hook&) = delete;
unicorn_hook& operator=(const unicorn_hook&) = delete;
unicorn_hook(unicorn_hook&& obj) noexcept
{
this->operator=(std::move(obj));
}
unicorn_hook& operator=(unicorn_hook&& obj) noexcept
{
if (this != &obj)
{
this->remove();
this->uc_ = obj.uc_;
this->hook_ = obj.hook_;
this->function_ = std::move(obj.function_);
obj.hook_ = {};
}
return *this;
}
~unicorn_hook()
{
this->remove();
}
void remove()
{
if (this->hook_)
{
uc_hook_del(*this->uc_, this->hook_);
this->hook_ = {};
}
this->function_ = {};
}
private:
using internal_function = std::function<void(uint64_t address, uint32_t size)>;
const unicorn* uc_{};
uc_hook hook_{};
std::unique_ptr<internal_function> function_{};
};