Implement some syscalls

This commit is contained in:
momo5502
2024-08-18 18:50:38 +02:00
parent 6a2b423e5b
commit f2e29dc665
10 changed files with 830 additions and 50 deletions

View File

@@ -1 +1,2 @@
add_subdirectory(common)
add_subdirectory(emulator)

16
src/common/CMakeLists.txt Normal file
View File

@@ -0,0 +1,16 @@
file(GLOB_RECURSE SRC_FILES CONFIGURE_DEPENDS
*.cpp
*.hpp
)
add_library(common ${SRC_FILES})
momo_assign_source_group(${SRC_FILES})
target_include_directories(common INTERFACE "${CMAKE_CURRENT_LIST_DIR}")
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
target_link_libraries(common PUBLIC
Threads::Threads
)

0
src/common/empty.cpp Normal file
View File

View File

@@ -0,0 +1,191 @@
#pragma once
#include <string>
#include <vector>
#include <stdexcept>
#include <cstring>
namespace utils
{
class buffer_deserializer
{
public:
template <typename T>
buffer_deserializer(const std::basic_string_view<T>& buffer)
: buffer_(reinterpret_cast<const std::byte*>(buffer.data()), buffer.size() * sizeof(T))
{
static_assert(std::is_trivially_copyable_v<T>, "Type must be trivially copyable");
}
template <typename T>
buffer_deserializer(const std::basic_string<T>& buffer)
: buffer_deserializer(std::basic_string_view<T>(buffer.data(), buffer.size()))
{
}
template <typename T>
buffer_deserializer(const std::vector<T>& buffer)
: buffer_deserializer(std::basic_string_view<T>(buffer.data(), buffer.size()))
{
}
void read(void* data, const size_t length)
{
if (this->offset_ + length > this->buffer_.size())
{
throw std::runtime_error("Out of bounds read from byte buffer");
}
memcpy(data, this->buffer_.data() + this->offset_, length);
this->offset_ += length;
}
std::string read_data(const size_t length)
{
std::string result{};
result.resize(length);
this->read(result.data(), result.size());
return result;
}
template <typename T>
T read()
{
static_assert(std::is_trivially_copyable_v<T>, "Type must be trivially copyable");
T object{};
this->read(&object, sizeof(object));
return object;
}
template <typename T>
std::vector<T> read_vector()
{
static_assert(std::is_trivially_copyable_v<T>, "Type must be trivially copyable");
std::vector<T> result{};
const auto size = this->read<uint32_t>();
const auto totalSize = size * sizeof(T);
if (this->offset_ + totalSize > this->buffer_.size())
{
throw std::runtime_error("Out of bounds read from byte buffer");
}
result.resize(size);
this->read(result.data(), totalSize);
return result;
}
std::string read_string()
{
std::string result{};
const auto size = this->read<uint32_t>();
if (this->offset_ + size > this->buffer_.size())
{
throw std::runtime_error("Out of bounds read from byte buffer");
}
result.resize(size);
this->read(result.data(), size);
return result;
}
size_t get_remaining_size() const
{
return this->buffer_.size() - offset_;
}
std::string get_remaining_data()
{
return this->read_data(this->get_remaining_size());
}
size_t get_offset() const
{
return this->offset_;
}
private:
size_t offset_{0};
std::basic_string_view<std::byte> buffer_{};
};
class buffer_serializer
{
public:
buffer_serializer() = default;
void write(const void* buffer, const size_t length)
{
this->buffer_.append(static_cast<const char*>(buffer), length);
}
void write(const char* text)
{
this->write(text, strlen(text));
}
void write_string(const char* str, const size_t length)
{
this->write<uint32_t>(static_cast<uint32_t>(length));
this->write(str, length);
}
void write_string(const std::string& str)
{
this->write_string(str.data(), str.size());
}
void write_string(const char* str)
{
this->write_string(str, strlen(str));
}
void write(const buffer_serializer& object)
{
const auto& buffer = object.get_buffer();
this->write(buffer.data(), buffer.size());
}
template <typename T>
void write(const T& object)
{
static_assert(std::is_trivially_copyable_v<T>, "Type must be trivially copyable");
this->write(&object, sizeof(object));
}
template <typename T>
void write(const std::vector<T>& vec)
{
static_assert(std::is_trivially_copyable_v<T>, "Type must be trivially copyable");
this->write(vec.data(), vec.size() * sizeof(T));
}
template <typename T>
void write_vector(const std::vector<T>& vec)
{
static_assert(std::is_trivially_copyable_v<T>, "Type must be trivially copyable");
this->write(static_cast<uint32_t>(vec.size()));
this->write(vec);
}
const std::string& get_buffer() const
{
return this->buffer_;
}
std::string move_buffer()
{
return std::move(this->buffer_);
}
private:
std::string buffer_{};
};
}

View File

@@ -0,0 +1,57 @@
#pragma once
#include <mutex>
namespace utils::concurrency
{
template <typename T, typename MutexType = std::mutex>
class container
{
public:
template <typename R = void, typename F>
R access(F&& accessor) const
{
std::lock_guard<MutexType> _{mutex_};
return accessor(object_);
}
template <typename R = void, typename F>
R access(F&& accessor)
{
std::lock_guard<MutexType> _{mutex_};
return accessor(object_);
}
template <typename R = void, typename F>
R access_with_lock(F&& accessor) const
{
std::unique_lock<MutexType> lock{mutex_};
return accessor(object_, lock);
}
template <typename R = void, typename F>
R access_with_lock(F&& accessor)
{
std::unique_lock<MutexType> lock{mutex_};
return accessor(object_, lock);
}
T& get_raw() { return object_; }
const T& get_raw() const { return object_; }
T copy() const
{
std::unique_lock<MutexType> lock{mutex_};
return object_;
}
std::unique_lock<MutexType> acquire_lock()
{
return std::unique_lock<MutexType>{mutex_};
}
private:
mutable MutexType mutex_{};
T object_{};
};
}

View File

@@ -0,0 +1,55 @@
#pragma once
#include <utility>
#include <type_traits>
namespace utils
{
/*
* Copied from here: https://github.com/microsoft/GSL/blob/e0880931ae5885eb988d1a8a57acf8bc2b8dacda/include/gsl/util#L57
*/
template <class F>
class final_action
{
public:
static_assert(!std::is_reference<F>::value && !std::is_const<F>::value &&
!std::is_volatile<F>::value,
"Final_action should store its callable by value");
explicit final_action(F f) noexcept : f_(std::move(f))
{
}
final_action(final_action&& other) noexcept
: f_(std::move(other.f_)), invoke_(std::exchange(other.invoke_, false))
{
}
final_action(const final_action&) = delete;
final_action& operator=(const final_action&) = delete;
final_action& operator=(final_action&&) = delete;
~final_action() noexcept
{
if (invoke_) f_();
}
// Added by momo5502
void cancel()
{
invoke_ = false;
}
private:
F f_;
bool invoke_{true};
};
template <class F>
final_action<typename std::remove_cv<typename std::remove_reference<F>::type>::type>
finally(F&& f) noexcept
{
return final_action<typename std::remove_cv<typename std::remove_reference<F>::type>::type>(
std::forward<F>(f));
}
}

View File

@@ -0,0 +1,26 @@
#pragma once
#include <chrono>
namespace utils
{
template <typename Clock = std::chrono::high_resolution_clock>
class timer
{
public:
void update()
{
this->point_ = Clock::now();
}
bool has_elapsed(typename Clock::duration duration) const
{
const auto now = Clock::now();
const auto diff = now - this->point_;
return diff > duration;
}
private:
typename Clock::time_point point_{ Clock::now() };
};
}

View File

@@ -12,7 +12,11 @@ momo_assign_source_group(${SRC_FILES})
target_precompile_headers(emulator PRIVATE std_include.hpp)
target_link_libraries(emulator PRIVATE unicorn phnt::phnt)
target_link_libraries(emulator PRIVATE
common
unicorn
phnt::phnt
)
set_property(GLOBAL PROPERTY VS_STARTUP_PROJECT emulator)

View File

@@ -11,9 +11,20 @@
#define KUSD_ADDRESS 0x7ffe0000
#include "unicorn.hpp"
#include <utils/finally.hpp>
namespace
{
bool is_within_start_and_end(const uint64_t value, const uint64_t start, const uint64_t end)
{
return value >= start && value < end;
}
bool is_within_start_and_length(const uint64_t value, const uint64_t start, const uint64_t length)
{
return is_within_start_and_end(value, start, start + length);
}
uint64_t align_down(const uint64_t value, const uint64_t alignment)
{
return value & ~(alignment - 1);
@@ -24,6 +35,11 @@ namespace
return align_down(value + (alignment - 1), alignment);
}
uint64_t page_align_down(const uint64_t value)
{
return align_down(value, 0x1000);
}
uint64_t page_align_up(const uint64_t value)
{
return align_up(value, 0x1000);
@@ -51,16 +67,34 @@ namespace
return reinterpret_cast<T*>(this->address_);
}
template <typename F>
void access(const F& accessor) const
operator bool() const
{
return this->address_ != 0;
}
T read() const
{
T obj{};
e(uc_mem_read(*this->uc_, this->address_, &obj, sizeof(obj)));
return obj;
}
void write(const T& value) const
{
e(uc_mem_write(*this->uc_, this->address_, &value, sizeof(value)));
}
template <typename F>
void access(const F& accessor) const
{
T obj{};
e(uc_mem_read(*this->uc_, this->address_, &obj, sizeof(obj)));
accessor(obj);
e(uc_mem_write(*this->uc_, this->address_, &obj, sizeof(obj)));
this->write(obj);
}
private:
@@ -107,19 +141,36 @@ namespace
class unicorn_hook
{
public:
using function = std::function<void(uint64_t address, uint32_t size)>;
using function = std::function<void(const unicorn& uc, uint64_t address, uint32_t size)>;
unicorn_hook(const unicorn& uc, const int type, const uint64_t begin, const uint64_t end, function callback)
template <typename... Args>
unicorn_hook(const unicorn& uc, const int type, const uint64_t begin, const uint64_t end, function callback,
Args... args)
: uc_(&uc)
, function_(std::make_unique<function>(std::move(callback)))
{
auto* handler = +[](uc_engine*, const uint64_t address, const uint32_t size,
this->function_ = std::make_unique<internal_function>(
[c = std::move(callback), &uc](const uint64_t address, const uint32_t size)
{
c(uc, address, size);
});
void* handler = +[](uc_engine*, const uint64_t address, const uint32_t size,
void* user_data)
{
(*static_cast<function*>(user_data))(address, size);
(*static_cast<internal_function*>(user_data))(address, size);
};
e(uc_hook_add(*this->uc_, &this->hook_, type, handler, this->function_.get(), begin, end));
if (type == UC_HOOK_INSN)
{
handler = +[](uc_engine* uc, void* user_data)
{
uint64_t rip{};
uc_reg_read(uc, UC_X86_REG_RIP, &rip);
(*static_cast<internal_function*>(user_data))(rip, 0);
};
}
e(uc_hook_add(*this->uc_, &this->hook_, type, handler, this->function_.get(), begin, end, args...));
}
unicorn_hook(const unicorn_hook&) = delete;
@@ -163,9 +214,11 @@ namespace
}
private:
using internal_function = std::function<void(uint64_t address, uint32_t size)>;
const unicorn* uc_{};
uc_hook hook_{};
std::unique_ptr<function> function_{};
std::unique_ptr<internal_function> function_{};
};
void setup_stack(const unicorn& uc, uint64_t stack_base, size_t stack_size)
@@ -209,43 +262,53 @@ namespace
});
}
std::unordered_map<std::string, uint64_t> map_module(const unicorn& uc, const std::vector<uint8_t>& module_data,
const std::string& name)
struct mapped_binary
{
uint64_t image_base{};
uint64_t size_of_image{};
std::unordered_map<std::string, uint64_t> exports{};
};
mapped_binary map_module(const unicorn& uc, const std::vector<uint8_t>& module_data,
const std::string& name)
{
mapped_binary binary{};
// TODO: Range checks
auto* ptr = module_data.data();
auto* dos_header = reinterpret_cast<const IMAGE_DOS_HEADER*>(ptr);
auto* nt_headers = reinterpret_cast<const IMAGE_NT_HEADERS*>(ptr + dos_header->e_lfanew);
auto& optional_header = nt_headers->OptionalHeader;
auto prefered_base = optional_header.ImageBase;
binary.image_base = optional_header.ImageBase;
binary.size_of_image = optional_header.SizeOfImage;
while (true)
{
const auto res = uc_mem_map(uc, prefered_base, optional_header.SizeOfImage, UC_PROT_READ);
const auto res = uc_mem_map(uc, binary.image_base, binary.size_of_image, UC_PROT_READ);
if (res == UC_ERR_OK)
{
break;
}
prefered_base += 0x10000;
binary.image_base += 0x10000;
if (prefered_base < optional_header.ImageBase || (optional_header.DllCharacteristics &
if (binary.image_base < optional_header.ImageBase || (optional_header.DllCharacteristics &
IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE) == 0)
{
throw std::runtime_error("Failed to map range");
}
}
printf("Mapping %s at %llX\n", name.c_str(), prefered_base);
printf("Mapping %s at %llX\n", name.c_str(), binary.image_base);
e(uc_mem_write(uc, prefered_base, ptr, optional_header.SizeOfHeaders));
e(uc_mem_write(uc, binary.image_base, ptr, optional_header.SizeOfHeaders));
const std::span sections(IMAGE_FIRST_SECTION(nt_headers), nt_headers->FileHeader.NumberOfSections);
for (const auto& section : sections)
{
const auto target_ptr = prefered_base + section.VirtualAddress;
const auto target_ptr = binary.image_base + section.VirtualAddress;
if (section.SizeOfRawData > 0)
{
@@ -292,54 +355,88 @@ namespace
const auto* ordinals = reinterpret_cast<const WORD*>(ptr + export_directory->AddressOfNameOrdinals);
const auto* functions = reinterpret_cast<const DWORD*>(ptr + export_directory->AddressOfFunctions);
std::unordered_map<std::string, uint64_t> exports{};
for (DWORD i = 0; i < names_count; i++)
{
const auto* function_name = reinterpret_cast<const char*>(ptr + names[i]);
const auto function_rva = functions[ordinals[i]];
const auto function_address = prefered_base + function_rva;
const auto function_address = binary.image_base + function_rva;
exports[function_name] = function_address;
binary.exports[function_name] = function_address;
}
return exports;
return binary;
}
void setup_teb_and_peb(const unicorn& uc)
struct event
{
bool signaled{};
EVENT_TYPE type{};
bool is_signaled()
{
const auto res = this->signaled;
if (this->type == SynchronizationEvent)
{
this->signaled = false;
}
return res;
}
};
struct process_context
{
unicorn_object<TEB> teb{};
unicorn_object<PEB> peb{};
unicorn_object<RTL_USER_PROCESS_PARAMETERS> process_params{};
mapped_binary executable{};
mapped_binary ntdll{};
std::vector<event> events{};
};
process_context setup_teb_and_peb(const unicorn& uc)
{
setup_stack(uc, STACK_ADDRESS, STACK_SIZE);
auto gs = setup_gs_segment(uc, GS_SEGMENT_ADDR, GS_SEGMENT_SIZE);
const auto teb_object = gs.reserve<TEB>();
const auto peb_object = gs.reserve<PEB>();
const auto ldr_object = gs.reserve<PEB_LDR_DATA>();
process_context context{};
teb_object.access([&](TEB& teb)
context.teb = gs.reserve<TEB>();
context.peb = gs.reserve<PEB>();
//context.ldr = gs.reserve<PEB_LDR_DATA>();
context.process_params = gs.reserve<RTL_USER_PROCESS_PARAMETERS>();
context.teb.access([&](TEB& teb)
{
teb.NtTib.StackLimit = reinterpret_cast<void*>(STACK_ADDRESS);
teb.NtTib.StackBase = reinterpret_cast<void*>((STACK_ADDRESS + STACK_SIZE));
teb.NtTib.Self = &teb_object.ptr()->NtTib;
teb.ProcessEnvironmentBlock = peb_object.ptr();
teb.NtTib.Self = &context.teb.ptr()->NtTib;
teb.ProcessEnvironmentBlock = context.peb.ptr();
});
peb_object.access([&](PEB& peb)
context.peb.access([&](PEB& peb)
{
peb.ImageBaseAddress = nullptr;
peb.Ldr = ldr_object.ptr();
//peb.Ldr = context.ldr.ptr();
peb.ProcessParameters = context.process_params.ptr();
});
ldr_object.access([&](PEB_LDR_DATA& ldr)
/*context.ldr.access([&](PEB_LDR_DATA& ldr)
{
ldr.InLoadOrderModuleList.Flink = &ldr_object.ptr()->InLoadOrderModuleList;
ldr.InLoadOrderModuleList.Flink = &context.ldr.ptr()->InLoadOrderModuleList;
ldr.InLoadOrderModuleList.Blink = ldr.InLoadOrderModuleList.Flink;
ldr.InMemoryOrderModuleList.Flink = &ldr_object.ptr()->InMemoryOrderModuleList;
ldr.InMemoryOrderModuleList.Flink = &context.ldr.ptr()->InMemoryOrderModuleList;
ldr.InMemoryOrderModuleList.Blink = ldr.InMemoryOrderModuleList.Flink;
ldr.InInitializationOrderModuleList.Flink = &ldr_object.ptr()->InInitializationOrderModuleList;
ldr.InInitializationOrderModuleList.Flink = &context.ldr.ptr()->InInitializationOrderModuleList;
ldr.InInitializationOrderModuleList.Blink = ldr.InInitializationOrderModuleList.Flink;
});
});*/
return context;
}
std::vector<uint8_t> load_file(const std::filesystem::path& file)
@@ -348,33 +445,338 @@ namespace
return {(std::istreambuf_iterator<char>(stream)), std::istreambuf_iterator<char>()};
}
std::unordered_map<std::string, uint64_t> map_file(const unicorn& uc, const std::filesystem::path& file)
mapped_binary map_file(const unicorn& uc, const std::filesystem::path& file)
{
const auto data = load_file(file);
return map_module(uc, data, file.generic_string());
}
void handle_NtQueryPerformanceCounter(const unicorn& uc)
{
const unicorn_object<LARGE_INTEGER> performance_counter{uc, uc.reg(UC_X86_REG_R10)};
const unicorn_object<LARGE_INTEGER> performance_frequency{uc, uc.reg(UC_X86_REG_RDX)};
try
{
if (performance_counter)
{
performance_counter.access([](LARGE_INTEGER& value)
{
QueryPerformanceCounter(&value);
});
}
if (performance_frequency)
{
performance_frequency.access([](LARGE_INTEGER& value)
{
QueryPerformanceFrequency(&value);
});
}
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
catch (...)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_ACCESS_VIOLATION);
}
}
uint32_t get_memory_protection(const unicorn& uc, uint64_t address)
{
uint32_t count{};
uc_mem_region* regions{};
e(uc_mem_regions(uc, &regions, &count));
const auto _ = utils::finally([&]
{
uc_free(regions);
});
for (const auto& region : std::span(regions, count))
{
if (is_within_start_and_end(address, region.begin, region.end))
{
return region.perms;
}
}
return UC_PROT_NONE;
}
uint32_t map_nt_to_unicorn_protection(const uint32_t nt_protection)
{
switch (nt_protection)
{
case PAGE_NOACCESS:
return UC_PROT_NONE;
case PAGE_READONLY:
return UC_PROT_READ;
case PAGE_READWRITE:
case PAGE_WRITECOPY:
return UC_PROT_READ | UC_PROT_WRITE;
case PAGE_EXECUTE:
case PAGE_EXECUTE_READ:
return UC_PROT_READ | UC_PROT_EXEC;
case PAGE_EXECUTE_READWRITE:
case PAGE_EXECUTE_WRITECOPY:
default:
return UC_PROT_ALL;
}
}
uint32_t map_unicorn_to_nt_protection(const uint32_t unicorn_protection)
{
const bool has_exec = unicorn_protection & UC_PROT_EXEC;
const bool has_read = unicorn_protection & UC_PROT_READ;
const bool has_write = unicorn_protection & UC_PROT_WRITE;
if (!has_read)
{
return PAGE_NOACCESS;
}
if (has_exec && has_write)
{
return PAGE_EXECUTE_READWRITE;
}
if (has_exec)
{
return PAGE_EXECUTE_READ;
}
if (has_write)
{
return PAGE_READWRITE;
}
return PAGE_READONLY;
}
void handle_NtManageHotPatch(const unicorn& uc)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_SUPPORTED);
}
void handle_NtCreateEvent(const unicorn& uc, process_context& context)
{
const unicorn_object<uint64_t> event_handle{uc, uc.reg(UC_X86_REG_R10)};
const auto object_attributes = uc.reg(UC_X86_REG_R8);
const auto event_type = uc.reg<EVENT_TYPE>(UC_X86_REG_R9D);
const auto initial_state = static_cast<BOOLEAN>(uc.read_stack(5));
if (object_attributes)
{
puts("Unsupported object attributes");
uc.stop();
return;
}
const uint64_t index = context.events.size();
event_handle.write(index);
context.events.emplace_back(initial_state != FALSE, event_type);
static_assert(sizeof(EVENT_TYPE) == sizeof(uint32_t));
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtQueryVirtualMemory(const unicorn& uc, const process_context& context)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const auto base_address = uc.reg(UC_X86_REG_RDX);
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_R8D);
const auto memory_information = uc.reg(UC_X86_REG_R9);
const auto memory_information_length = static_cast<uint32_t>(uc.read_stack(5));
const unicorn_object<uint32_t> return_length{uc, uc.read_stack(6)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
if (info_class != MemoryImageInformation)
{
printf("Unsupported memory info class: %X\n", info_class);
uc.stop();
return;
}
if (return_length)
{
return_length.write(sizeof(MEMORY_IMAGE_INFORMATION));
}
if (memory_information_length != sizeof(MEMORY_IMAGE_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
return;
}
if (!is_within_start_and_length(base_address, context.ntdll.image_base, context.ntdll.size_of_image))
{
puts("Bad image request");
uc.stop();
return;
}
const unicorn_object<MEMORY_IMAGE_INFORMATION> info{uc, memory_information};
info.access([&](MEMORY_IMAGE_INFORMATION& image_info)
{
image_info.ImageBase = reinterpret_cast<void*>(context.ntdll.image_base);
image_info.SizeOfImage = context.ntdll.size_of_image;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtQuerySystemInformation(const unicorn& uc, const process_context& context)
{
const auto info_class = uc.reg<uint32_t>(UC_X86_REG_R10D);
const auto system_information = uc.reg(UC_X86_REG_RDX);
const auto system_information_length = uc.reg<uint32_t>(UC_X86_REG_R8D);
const unicorn_object<uint32_t> return_length{uc, uc.reg(UC_X86_REG_R9)};
if (info_class != SystemBasicInformation)
{
printf("Unsupported system info class: %X\n", info_class);
uc.stop();
return;
}
if (return_length)
{
return_length.write(sizeof(SYSTEM_BASIC_INFORMATION));
}
if (system_information_length != sizeof(SYSTEM_BASIC_INFORMATION))
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_BUFFER_OVERFLOW);
return;
}
const unicorn_object<SYSTEM_BASIC_INFORMATION> info{uc, system_information};
info.access([&](SYSTEM_BASIC_INFORMATION& basic_info)
{
basic_info.Reserved = 0;
basic_info.TimerResolution = 0x0002625a;
basic_info.PageSize = 0x1000;
basic_info.LowestPhysicalPageNumber = 0x00000001;
basic_info.HighestPhysicalPageNumber = 0x00c9c7ff;
basic_info.AllocationGranularity = 0x10000;
basic_info.MinimumUserModeAddress = 0x0000000000010000;
basic_info.MaximumUserModeAddress = 0x00007ffffffeffff;
basic_info.ActiveProcessorsAffinityMask = 0x0000000000000fff;
basic_info.NumberOfProcessors = 1;
});
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void handle_NtProtectVirtualMemory(const unicorn& uc)
{
const auto process_handle = uc.reg(UC_X86_REG_R10);
const unicorn_object<uint64_t> base_address{uc, uc.reg(UC_X86_REG_RDX)};
const unicorn_object<uint32_t> bytes_to_protect{uc, uc.reg(UC_X86_REG_R8)};
const auto protection = uc.reg<uint32_t>(UC_X86_REG_R9D);
const unicorn_object<uint32_t> old_protection{uc, uc.read_stack(5)};
if (process_handle != ~0ULL)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
return;
}
const auto address = page_align_down(base_address.read());
base_address.write(address);
const auto size = page_align_up(bytes_to_protect.read());
bytes_to_protect.write(static_cast<uint32_t>(size));
const auto current_uc_protection = get_memory_protection(uc, address);
const auto current_protection = map_unicorn_to_nt_protection(current_uc_protection);
old_protection.write(current_protection);
const auto requested_protection = map_nt_to_unicorn_protection(protection);
e(uc_mem_protect(uc, address, size, requested_protection));
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_SUCCESS);
}
void run()
{
const unicorn uc{UC_ARCH_X86, UC_MODE_64};
setup_kusd(uc);
setup_teb_and_peb(uc);
auto context = setup_teb_and_peb(uc);
const auto executable_exports = map_file(uc, R"(C:\Users\mauri\Desktop\ConsoleApplication6.exe)");
context.executable = map_file(uc, R"(C:\Users\mauri\Desktop\ConsoleApplication6.exe)");
const auto ntdll_exports = map_file(uc, R"(C:\Windows\System32\ntdll.dll)");
context.peb.access([&](PEB& peb)
{
peb.ImageBaseAddress = reinterpret_cast<void*>(context.executable.image_base);
});
const auto entry1 = ntdll_exports.at("LdrInitializeThunk");
const auto entry2 = ntdll_exports.at("RtlUserThreadStart");
context.ntdll = map_file(uc, R"(C:\Windows\System32\ntdll.dll)");
const auto entry1 = context.ntdll.exports.at("LdrInitializeThunk");
const auto entry2 = context.ntdll.exports.at("RtlUserThreadStart");
(void)entry1;
(void)entry2;
unicorn_hook hook(uc, UC_HOOK_INTR, 0, 0, [](const uint64_t address, const uint32_t /*size*/)
{
printf("Syscall: %llX\n", address);
});
unicorn_hook hook(uc, UC_HOOK_INSN, 0, std::numeric_limits<uint64_t>::max(),
[&](const unicorn&, const uint64_t address, const uint32_t /*size*/)
{
const auto syscall_id = uc.reg<uint32_t>(UC_X86_REG_EAX);
printf("Handling syscall: %X (%llX)\n", syscall_id, address);
try
{
switch (syscall_id)
{
case 0x23:
handle_NtQueryVirtualMemory(uc, context);
break;
case 0x31:
handle_NtQueryPerformanceCounter(uc);
break;
case 0x36:
handle_NtQuerySystemInformation(uc, context);
break;
case 0x48:
handle_NtCreateEvent(uc, context);
break;
case 0x50:
handle_NtProtectVirtualMemory(uc);
break;
case 0x11A:
handle_NtManageHotPatch(uc);
break;
default:
printf("Unhandled syscall: %X\n", syscall_id);
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_NOT_IMPLEMENTED);
uc.stop();
break;
}
}
catch (...)
{
uc.reg<uint64_t>(UC_X86_REG_RAX, STATUS_UNSUCCESSFUL);
}
}, UC_X86_INS_SYSCALL);
unicorn_hook hook2(uc, UC_HOOK_CODE, 0, std::numeric_limits<uint64_t>::max(),
[](const unicorn&, const uint64_t address, const uint32_t /*size*/)
{
printf("Inst: %llX\n", address);
});
const auto err = uc_emu_start(uc, entry1, 0, 0, 0);
if (err != UC_ERR_OK)
@@ -406,7 +808,7 @@ int main(int /*argc*/, char** /*argv*/)
puts(e.what());
#ifdef _WIN32
MessageBoxA(nullptr, e.what(), "ERROR", MB_ICONERROR);
//MessageBoxA(nullptr, e.what(), "ERROR", MB_ICONERROR);
#endif
}

View File

@@ -42,6 +42,34 @@ public:
return this->uc_;
}
template <typename T = uint64_t>
T reg(const int regid) const
{
T value{};
e(uc_reg_read(this->uc_, regid, &value));
return value;
}
template <typename T = uint64_t>
void reg(const int regid, const T& value) const
{
e(uc_reg_write(this->uc_, regid, &value));
}
void stop() const
{
e(uc_emu_stop(this->uc_));
}
uint64_t read_stack(const size_t index) const
{
uint64_t result{};
const auto rsp = this->reg(UC_X86_REG_RSP);
e(uc_mem_read(this->uc_, rsp + (index * sizeof(result)), &result, sizeof(result)));
return result;
}
private:
uc_engine* uc_{};
};