Add clang format configuration (#58)

This fixes #48
This commit is contained in:
Maurice Heumann
2025-01-06 17:24:58 +01:00
committed by GitHub
102 changed files with 16478 additions and 14509 deletions

26
.clang-format Normal file
View File

@@ -0,0 +1,26 @@
# Format Style Options - Created with Clang Power Tools
---
BasedOnStyle: Microsoft
AlwaysBreakTemplateDeclarations: Yes
BreakConstructorInitializers: BeforeColon
DerivePointerAlignment: false
FixNamespaceComments: false
KeepEmptyLinesAtTheStartOfBlocks: false
Language: Cpp
MaxEmptyLinesToKeep: 1
NamespaceIndentation: All
PointerAlignment: Left
SortIncludes: false
AlignEscapedNewlines: Left
PackConstructorInitializers: Never
IndentPPDirectives: None
AlignConsecutiveMacros:
Enabled: true
AcrossEmptyLines: true
AcrossComments: true
AlignCompound: true
PadOperators: true
BraceWrapping:
AfterStruct: true
AfterUnion: true
...

View File

@@ -15,6 +15,19 @@ on:
# cancel-in-progress: true
jobs:
verify-formatting:
name: Verify Formatting
runs-on: ubuntu-24.04
steps:
- name: Checkout Source
uses: actions/checkout@v4
- name: Verify Formatting
uses: jidicula/clang-format-action@v4.14.0
with:
clang-format-version: '19'
check-path: 'src'
dump-registry:
name: Dump Registry
runs-on: windows-latest

View File

@@ -7,254 +7,247 @@
namespace
{
struct analysis_options
{
bool use_gdb{false};
bool concise_logging{false};
};
struct analysis_options
{
bool use_gdb{false};
bool concise_logging{false};
};
void watch_system_objects(windows_emulator& win_emu, const bool cache_logging)
{
(void)win_emu;
(void)cache_logging;
void watch_system_objects(windows_emulator& win_emu, const bool cache_logging)
{
(void)win_emu;
(void)cache_logging;
#ifdef OS_WINDOWS
watch_object(win_emu, *win_emu.current_thread().teb, cache_logging);
watch_object(win_emu, win_emu.process().peb, cache_logging);
watch_object(win_emu, emulator_object<KUSER_SHARED_DATA64>{win_emu.emu(), kusd_mmio::address()}, cache_logging);
watch_object(win_emu, *win_emu.current_thread().teb, cache_logging);
watch_object(win_emu, win_emu.process().peb, cache_logging);
watch_object(win_emu, emulator_object<KUSER_SHARED_DATA64>{win_emu.emu(), kusd_mmio::address()}, cache_logging);
auto* params_hook = watch_object(win_emu, win_emu.process().process_params, cache_logging);
auto* params_hook = watch_object(win_emu, win_emu.process().process_params, cache_logging);
win_emu.emu().hook_memory_write(win_emu.process().peb.value() + offsetof(PEB64, ProcessParameters), 0x8,
[&, cache_logging](const uint64_t address, size_t, const uint64_t value)
{
const auto target_address = win_emu.process().peb.value() + offsetof(
PEB64, ProcessParameters);
win_emu.emu().hook_memory_write(
win_emu.process().peb.value() + offsetof(PEB64, ProcessParameters), 0x8,
[&, cache_logging](const uint64_t address, size_t, const uint64_t value) {
const auto target_address = win_emu.process().peb.value() + offsetof(PEB64, ProcessParameters);
if (address == target_address)
{
const emulator_object<RTL_USER_PROCESS_PARAMETERS64> obj{
win_emu.emu(), value
};
if (address == target_address)
{
const emulator_object<RTL_USER_PROCESS_PARAMETERS64> obj{win_emu.emu(), value};
win_emu.emu().delete_hook(params_hook);
params_hook = watch_object(win_emu, obj, cache_logging);
}
});
win_emu.emu().delete_hook(params_hook);
params_hook = watch_object(win_emu, obj, cache_logging);
}
});
#endif
}
}
void run_emulation(windows_emulator& win_emu, const analysis_options& options)
{
try
{
if (options.use_gdb)
{
const auto* address = "127.0.0.1:28960";
win_emu.log.print(color::pink, "Waiting for GDB connection on %s...\n", address);
void run_emulation(windows_emulator& win_emu, const analysis_options& options)
{
try
{
if (options.use_gdb)
{
const auto* address = "127.0.0.1:28960";
win_emu.log.print(color::pink, "Waiting for GDB connection on %s...\n", address);
win_x64_gdb_stub_handler handler{win_emu};
run_gdb_stub(handler, "i386:x86-64", gdb_registers.size(), address);
}
else
{
win_emu.start();
}
}
catch (const std::exception& e)
{
win_emu.log.print(color::red, "Emulation failed at: 0x%" PRIx64 " - %s\n",
win_emu.emu().read_instruction_pointer(), e.what());
throw;
}
catch (...)
{
win_emu.log.print(color::red, "Emulation failed at: 0x%" PRIx64 "\n",
win_emu.emu().read_instruction_pointer());
throw;
}
win_x64_gdb_stub_handler handler{win_emu};
run_gdb_stub(handler, "i386:x86-64", gdb_registers.size(), address);
}
else
{
win_emu.start();
}
}
catch (const std::exception& e)
{
win_emu.log.print(color::red, "Emulation failed at: 0x%" PRIx64 " - %s\n",
win_emu.emu().read_instruction_pointer(), e.what());
throw;
}
catch (...)
{
win_emu.log.print(color::red, "Emulation failed at: 0x%" PRIx64 "\n",
win_emu.emu().read_instruction_pointer());
throw;
}
const auto exit_status = win_emu.process().exit_status;
if (exit_status.has_value())
{
win_emu.log.print(color::red, "Emulation terminated with status: %X\n", *exit_status);
}
else
{
win_emu.log.print(color::red, "Emulation terminated without status!\n");
}
}
const auto exit_status = win_emu.process().exit_status;
if (exit_status.has_value())
{
win_emu.log.print(color::red, "Emulation terminated with status: %X\n", *exit_status);
}
else
{
win_emu.log.print(color::red, "Emulation terminated without status!\n");
}
}
std::vector<std::u16string> parse_arguments(const std::span<const std::string_view> args)
{
std::vector<std::u16string> wide_args{};
wide_args.reserve(args.size() - 1);
std::vector<std::u16string> parse_arguments(const std::span<const std::string_view> args)
{
std::vector<std::u16string> wide_args{};
wide_args.reserve(args.size() - 1);
for (size_t i = 1; i < args.size(); ++i)
{
const auto& arg = args[i];
wide_args.emplace_back(arg.begin(), arg.end());
}
for (size_t i = 1; i < args.size(); ++i)
{
const auto& arg = args[i];
wide_args.emplace_back(arg.begin(), arg.end());
}
return wide_args;
}
return wide_args;
}
void run(const analysis_options& options, const std::span<const std::string_view> args)
{
if (args.empty())
{
return;
}
void run(const analysis_options& options, const std::span<const std::string_view> args)
{
if (args.empty())
{
return;
}
emulator_settings settings{
.application = args[0],
.arguments = parse_arguments(args),
.silent_until_main = options.concise_logging,
};
emulator_settings settings{
.application = args[0],
.arguments = parse_arguments(args),
.silent_until_main = options.concise_logging,
};
windows_emulator win_emu{std::move(settings)};
windows_emulator win_emu{std::move(settings)};
(void)&watch_system_objects;
watch_system_objects(win_emu, options.concise_logging);
win_emu.buffer_stdout = true;
//win_emu.verbose_calls = true;
(void)&watch_system_objects;
watch_system_objects(win_emu, options.concise_logging);
win_emu.buffer_stdout = true;
// win_emu.verbose_calls = true;
const auto& exe = *win_emu.process().executable;
const auto& exe = *win_emu.process().executable;
const auto concise_logging = options.concise_logging;
const auto concise_logging = options.concise_logging;
for (const auto& section : exe.sections)
{
if ((section.region.permissions & memory_permission::exec) != memory_permission::exec)
{
continue;
}
for (const auto& section : exe.sections)
{
if ((section.region.permissions & memory_permission::exec) != memory_permission::exec)
{
continue;
}
auto read_handler = [&, section, concise_logging](const uint64_t address, size_t, uint64_t)
{
const auto rip = win_emu.emu().read_instruction_pointer();
if (win_emu.process().mod_manager.find_by_address(rip) != win_emu.process().executable)
{
return;
}
auto read_handler = [&, section, concise_logging](const uint64_t address, size_t, uint64_t) {
const auto rip = win_emu.emu().read_instruction_pointer();
if (win_emu.process().mod_manager.find_by_address(rip) != win_emu.process().executable)
{
return;
}
if (concise_logging)
{
static uint64_t count{0};
++count;
if (count > 100 && count % 10000 != 0) return;
}
if (concise_logging)
{
static uint64_t count{0};
++count;
if (count > 100 && count % 10000 != 0)
return;
}
win_emu.log.print(
color::green,
"Reading from executable section %s at 0x%" PRIx64 " via 0x%" PRIx64 "\n",
section.name.c_str(), address, rip);
};
win_emu.log.print(color::green,
"Reading from executable section %s at 0x%" PRIx64 " via 0x%" PRIx64 "\n",
section.name.c_str(), address, rip);
};
const auto write_handler = [&, section, concise_logging](const uint64_t address, size_t, uint64_t)
{
const auto rip = win_emu.emu().read_instruction_pointer();
if (win_emu.process().mod_manager.find_by_address(rip) != win_emu.process().executable)
{
return;
}
const auto write_handler = [&, section, concise_logging](const uint64_t address, size_t, uint64_t) {
const auto rip = win_emu.emu().read_instruction_pointer();
if (win_emu.process().mod_manager.find_by_address(rip) != win_emu.process().executable)
{
return;
}
if (concise_logging)
{
static uint64_t count{0};
++count;
if (count > 100 && count % 10000 != 0) return;
}
if (concise_logging)
{
static uint64_t count{0};
++count;
if (count > 100 && count % 10000 != 0)
return;
}
win_emu.log.print(
color::blue,
"Writing to executable section %s at 0x%" PRIx64 " via 0x%" PRIx64 "\n",
section.name.c_str(), address, rip);
};
win_emu.log.print(color::blue, "Writing to executable section %s at 0x%" PRIx64 " via 0x%" PRIx64 "\n",
section.name.c_str(), address, rip);
};
win_emu.emu().hook_memory_read(section.region.start, section.region.length, std::move(read_handler));
win_emu.emu().hook_memory_write(section.region.start, section.region.length, std::move(write_handler));
}
win_emu.emu().hook_memory_read(section.region.start, section.region.length, std::move(read_handler));
win_emu.emu().hook_memory_write(section.region.start, section.region.length, std::move(write_handler));
}
run_emulation(win_emu, options);
}
run_emulation(win_emu, options);
}
std::vector<std::string_view> bundle_arguments(const int argc, char** argv)
{
std::vector<std::string_view> args{};
std::vector<std::string_view> bundle_arguments(const int argc, char** argv)
{
std::vector<std::string_view> args{};
for (int i = 1; i < argc; ++i)
{
args.push_back(argv[i]);
}
for (int i = 1; i < argc; ++i)
{
args.push_back(argv[i]);
}
return args;
}
return args;
}
analysis_options parse_options(std::vector<std::string_view>& args)
{
analysis_options options{};
analysis_options parse_options(std::vector<std::string_view>& args)
{
analysis_options options{};
while (!args.empty())
{
auto arg_it = args.begin();
const auto& arg = *arg_it;
while (!args.empty())
{
auto arg_it = args.begin();
const auto& arg = *arg_it;
if (arg == "-d")
{
options.use_gdb = true;
}
else if (arg == "-c")
{
options.concise_logging = true;
}
else
{
break;
}
if (arg == "-d")
{
options.use_gdb = true;
}
else if (arg == "-c")
{
options.concise_logging = true;
}
else
{
break;
}
args.erase(arg_it);
}
args.erase(arg_it);
}
return options;
}
return options;
}
}
int main(const int argc, char** argv)
{
try
{
auto args = bundle_arguments(argc, argv);
const auto options = parse_options(args);
try
{
auto args = bundle_arguments(argc, argv);
const auto options = parse_options(args);
if (args.empty())
{
throw std::runtime_error("Application not specified!");
}
if (args.empty())
{
throw std::runtime_error("Application not specified!");
}
do
{
run(options, args);
}
while (options.use_gdb);
do
{
run(options, args);
} while (options.use_gdb);
return 0;
}
catch (std::exception& e)
{
puts(e.what());
return 0;
}
catch (std::exception& e)
{
puts(e.what());
#if defined(_WIN32) && 0
MessageBoxA(nullptr, e.what(), "ERROR", MB_ICONERROR);
MessageBoxA(nullptr, e.what(), "ERROR", MB_ICONERROR);
#endif
}
}
return 1;
return 1;
}
#ifdef _WIN32
int WINAPI WinMain(HINSTANCE, HINSTANCE, PSTR, int)
{
return main(__argc, __argv);
return main(__argc, __argv);
}
#endif

View File

@@ -5,36 +5,32 @@
template <typename T>
emulator_hook* watch_object(windows_emulator& emu, emulator_object<T> object, const bool cache_logging = false)
{
const reflect_type_info<T> info{};
const reflect_type_info<T> info{};
return emu.emu().hook_memory_read(object.value(), object.size(),
[i = std::move(info), object, &emu, cache_logging](
const uint64_t address, size_t, uint64_t)
{
const auto rip = emu.emu().read_instruction_pointer();
const auto* mod = emu.process().mod_manager.find_by_address(rip);
const auto is_main_access = mod == emu.process().executable;
return emu.emu().hook_memory_read(
object.value(), object.size(),
[i = std::move(info), object, &emu, cache_logging](const uint64_t address, size_t, uint64_t) {
const auto rip = emu.emu().read_instruction_pointer();
const auto* mod = emu.process().mod_manager.find_by_address(rip);
const auto is_main_access = mod == emu.process().executable;
if (!emu.verbose_calls && !is_main_access)
{
return;
}
if (!emu.verbose_calls && !is_main_access)
{
return;
}
if (cache_logging)
{
static std::unordered_set<uint64_t> logged_addresses{};
if (is_main_access && !logged_addresses.insert(address).second)
{
return;
}
}
if (cache_logging)
{
static std::unordered_set<uint64_t> logged_addresses{};
if (is_main_access && !logged_addresses.insert(address).second)
{
return;
}
}
const auto offset = address - object.value();
emu.log.print(is_main_access ? color::green : color::dark_gray,
"Object access: %s - 0x%llX (%s) at 0x%llX (%s)\n",
i.get_type_name().c_str(),
offset,
i.get_member_name(offset).c_str(), rip,
mod ? mod->name.c_str() : "<N/A>");
});
const auto offset = address - object.value();
emu.log.print(is_main_access ? color::green : color::dark_gray,
"Object access: %s - 0x%llX (%s) at 0x%llX (%s)\n", i.get_type_name().c_str(), offset,
i.get_member_name(offset).c_str(), rip, mod ? mod->name.c_str() : "<N/A>");
});
}

File diff suppressed because it is too large Load Diff

View File

@@ -15,51 +15,50 @@
template <typename T>
class reflect_type_info
{
public:
reflect_type_info()
{
this->type_name_ = reflect::type_name<T>();
public:
reflect_type_info()
{
this->type_name_ = reflect::type_name<T>();
reflect::for_each<T>([this](auto I)
{
const auto member_name = reflect::member_name<I, T>();
const auto member_offset = reflect::offset_of<I, T>();
reflect::for_each<T>([this](auto I) {
const auto member_name = reflect::member_name<I, T>();
const auto member_offset = reflect::offset_of<I, T>();
this->members_[member_offset] = member_name;
});
}
this->members_[member_offset] = member_name;
});
}
std::string get_member_name(const size_t offset) const
{
size_t last_offset{};
std::string_view last_member{};
std::string get_member_name(const size_t offset) const
{
size_t last_offset{};
std::string_view last_member{};
for (const auto& member : this->members_)
{
if (offset == member.first)
{
return member.second;
}
for (const auto& member : this->members_)
{
if (offset == member.first)
{
return member.second;
}
if (offset < member.first)
{
const auto diff = offset - last_offset;
return std::string(last_member) + "+" + std::to_string(diff);
}
if (offset < member.first)
{
const auto diff = offset - last_offset;
return std::string(last_member) + "+" + std::to_string(diff);
}
last_offset = member.first;
last_member = member.second;
}
last_offset = member.first;
last_member = member.second;
}
return "<N/A>";
}
return "<N/A>";
}
const std::string& get_type_name() const
{
return this->type_name_;
}
const std::string& get_type_name() const
{
return this->type_name_;
}
private:
std::string type_name_{};
std::map<size_t, std::string> members_{};
private:
std::string type_name_{};
std::map<size_t, std::string> members_{};
};

View File

@@ -5,61 +5,59 @@
#define THE_SIZE 30
extern "C" NO_INLINE EXPORT_SYMBOL
void vulnerable(const uint8_t* data, const size_t size)
extern "C" NO_INLINE EXPORT_SYMBOL void vulnerable(const uint8_t* data, const size_t size)
{
if (size < 10)
{
return;
}
if (size < 10)
{
return;
}
if (data[9] != 'A')
{
return;
}
if (data[9] != 'A')
{
return;
}
if (data[8] != 'B')
{
return;
}
if (data[8] != 'B')
{
return;
}
if (data[7] != 'C')
{
return;
}
if (data[7] != 'C')
{
return;
}
if (data[2] != 'V')
{
return;
}
if (data[2] != 'V')
{
return;
}
if (data[4] != 'H')
{
return;
}
if (data[4] != 'H')
{
return;
}
if (size < 100)
{
return;
}
if (size < 100)
{
return;
}
*(int*)1 = 1;
*(int*)1 = 1;
}
uint8_t buffer[THE_SIZE] = {};
int main(int argc, const char* argv[])
{
const void* input = buffer;
auto size = sizeof(buffer);
const void* input = buffer;
auto size = sizeof(buffer);
if (argc > 1)
{
input = argv[1];
size = strlen(argv[1]);
}
if (argc > 1)
{
input = argv[1];
size = strlen(argv[1]);
}
vulnerable((uint8_t*)input, size);
return 0;
vulnerable((uint8_t*)input, size);
return 0;
}

View File

@@ -8,376 +8,365 @@ using namespace std::literals;
namespace network
{
void initialize_wsa()
{
void initialize_wsa()
{
#ifdef _WIN32
static struct wsa_initializer
{
public:
wsa_initializer()
{
WSADATA wsa_data;
if (WSAStartup(MAKEWORD(2, 2), &wsa_data))
{
throw std::runtime_error("Unable to initialize WSA");
}
}
static struct wsa_initializer
{
wsa_initializer()
{
WSADATA wsa_data;
if (WSAStartup(MAKEWORD(2, 2), &wsa_data))
{
throw std::runtime_error("Unable to initialize WSA");
}
}
~wsa_initializer()
{
WSACleanup();
}
} _;
~wsa_initializer()
{
WSACleanup();
}
} _;
#endif
}
}
address::address()
{
initialize_wsa();
ZeroMemory(&this->storage_, this->get_max_size());
address::address()
{
initialize_wsa();
ZeroMemory(&this->storage_, this->get_max_size());
this->address_.sa_family = AF_UNSPEC;
}
this->address_.sa_family = AF_UNSPEC;
}
address::address(const std::string& addr, const std::optional<int>& family)
: address()
{
this->parse(addr, family);
}
address::address(const std::string& addr, const std::optional<int>& family)
: address()
{
this->parse(addr, family);
}
address::address(const sockaddr_in6& addr)
: address()
{
this->address6_ = addr;
}
address::address(const sockaddr_in6& addr)
: address()
{
this->address6_ = addr;
}
address::address(const sockaddr_in& addr)
: address()
{
this->address4_ = addr;
}
address::address(const sockaddr_in& addr)
: address()
{
this->address4_ = addr;
}
address::address(const sockaddr* addr, const socklen_t length)
: address()
{
this->set_address(addr, length);
}
address::address(const sockaddr* addr, const socklen_t length)
: address()
{
this->set_address(addr, length);
}
void address::set_ipv4(const uint32_t ip)
{
in_addr addr{};
addr.s_addr = ip;
this->set_ipv4(addr);
}
void address::set_ipv4(const uint32_t ip)
{
in_addr addr{};
addr.s_addr = ip;
this->set_ipv4(addr);
}
bool address::operator==(const address& obj) const
{
if (this->address_.sa_family != obj.address_.sa_family)
{
return false;
}
bool address::operator==(const address& obj) const
{
if (this->address_.sa_family != obj.address_.sa_family)
{
return false;
}
if (this->get_port() != obj.get_port())
{
return false;
}
if (this->get_port() != obj.get_port())
{
return false;
}
if (this->address_.sa_family == AF_INET)
{
return this->address4_.sin_addr.s_addr == obj.address4_.sin_addr.s_addr;
}
else if (this->address_.sa_family == AF_INET6)
{
return !memcmp(this->address6_.sin6_addr.s6_addr, obj.address6_.sin6_addr.s6_addr,
sizeof(obj.address6_.sin6_addr.s6_addr));
}
if (this->address_.sa_family == AF_INET)
{
return this->address4_.sin_addr.s_addr == obj.address4_.sin_addr.s_addr;
}
else if (this->address_.sa_family == AF_INET6)
{
return !memcmp(this->address6_.sin6_addr.s6_addr, obj.address6_.sin6_addr.s6_addr,
sizeof(obj.address6_.sin6_addr.s6_addr));
}
return false;
}
return false;
}
void address::set_ipv4(const in_addr& addr)
{
ZeroMemory(&this->address4_, sizeof(this->address4_));
this->address4_.sin_family = AF_INET;
this->address4_.sin_addr = addr;
}
void address::set_ipv4(const in_addr& addr)
{
ZeroMemory(&this->address4_, sizeof(this->address4_));
this->address4_.sin_family = AF_INET;
this->address4_.sin_addr = addr;
}
void address::set_ipv6(const in6_addr& addr)
{
ZeroMemory(&this->address6_, sizeof(this->address6_));
this->address6_.sin6_family = AF_INET6;
this->address6_.sin6_addr = addr;
}
void address::set_ipv6(const in6_addr& addr)
{
ZeroMemory(&this->address6_, sizeof(this->address6_));
this->address6_.sin6_family = AF_INET6;
this->address6_.sin6_addr = addr;
}
void address::set_address(const sockaddr* addr, const socklen_t length)
{
if (static_cast<size_t>(length) >= sizeof(sockaddr_in) && addr->sa_family == AF_INET)
{
this->address4_ = *reinterpret_cast<const sockaddr_in*>(addr);
}
else if (static_cast<size_t>(length) == sizeof(sockaddr_in6) && addr->sa_family == AF_INET6)
{
this->address6_ = *reinterpret_cast<const sockaddr_in6*>(addr);
}
else
{
throw std::runtime_error("Invalid network address");
}
}
void address::set_address(const sockaddr* addr, const socklen_t length)
{
if (static_cast<size_t>(length) >= sizeof(sockaddr_in) && addr->sa_family == AF_INET)
{
this->address4_ = *reinterpret_cast<const sockaddr_in*>(addr);
}
else if (static_cast<size_t>(length) == sizeof(sockaddr_in6) && addr->sa_family == AF_INET6)
{
this->address6_ = *reinterpret_cast<const sockaddr_in6*>(addr);
}
else
{
throw std::runtime_error("Invalid network address");
}
}
void address::set_port(const unsigned short port)
{
switch (this->address_.sa_family)
{
case AF_INET:
this->address4_.sin_port = htons(port);
break;
case AF_INET6:
this->address6_.sin6_port = htons(port);
break;
default:
throw std::runtime_error("Invalid address family");
}
}
void address::set_port(const unsigned short port)
{
switch (this->address_.sa_family)
{
case AF_INET:
this->address4_.sin_port = htons(port);
break;
case AF_INET6:
this->address6_.sin6_port = htons(port);
break;
default:
throw std::runtime_error("Invalid address family");
}
}
unsigned short address::get_port() const
{
switch (this->address_.sa_family)
{
case AF_INET:
return ntohs(this->address4_.sin_port);
case AF_INET6:
return ntohs(this->address6_.sin6_port);
default:
return 0;
}
}
unsigned short address::get_port() const
{
switch (this->address_.sa_family)
{
case AF_INET:
return ntohs(this->address4_.sin_port);
case AF_INET6:
return ntohs(this->address6_.sin6_port);
default:
return 0;
}
}
std::string address::to_string() const
{
char buffer[1000] = {0};
std::string addr;
std::string address::to_string() const
{
char buffer[1000] = {0};
std::string addr;
switch (this->address_.sa_family)
{
case AF_INET:
inet_ntop(this->address_.sa_family, &this->address4_.sin_addr, buffer, sizeof(buffer));
addr = std::string(buffer);
break;
case AF_INET6:
inet_ntop(this->address_.sa_family, &this->address6_.sin6_addr, buffer, sizeof(buffer));
addr = "[" + std::string(buffer) + "]";
break;
default:
buffer[0] = '?';
buffer[1] = 0;
addr = std::string(buffer);
break;
}
switch (this->address_.sa_family)
{
case AF_INET:
inet_ntop(this->address_.sa_family, &this->address4_.sin_addr, buffer, sizeof(buffer));
addr = std::string(buffer);
break;
case AF_INET6:
inet_ntop(this->address_.sa_family, &this->address6_.sin6_addr, buffer, sizeof(buffer));
addr = "[" + std::string(buffer) + "]";
break;
default:
buffer[0] = '?';
buffer[1] = 0;
addr = std::string(buffer);
break;
}
return addr + ":"s + std::to_string(this->get_port());
}
return addr + ":"s + std::to_string(this->get_port());
}
bool address::is_local() const
{
if (this->address_.sa_family != AF_INET)
{
return false;
}
bool address::is_local() const
{
if (this->address_.sa_family != AF_INET)
{
return false;
}
// According to: https://en.wikipedia.org/wiki/Private_network
// According to: https://en.wikipedia.org/wiki/Private_network
uint8_t bytes[4];
*reinterpret_cast<uint32_t*>(&bytes) = this->address4_.sin_addr.s_addr;
uint8_t bytes[4];
*reinterpret_cast<uint32_t*>(&bytes) = this->address4_.sin_addr.s_addr;
// 10.X.X.X
if (bytes[0] == 10)
{
return true;
}
// 10.X.X.X
if (bytes[0] == 10)
{
return true;
}
// 192.168.X.X
if (bytes[0] == 192
&& bytes[1] == 168)
{
return true;
}
// 192.168.X.X
if (bytes[0] == 192 && bytes[1] == 168)
{
return true;
}
// 172.16.X.X - 172.31.X.X
if (bytes[0] == 172
&& bytes[1] >= 16
&& bytes[1] < 32)
{
return true;
}
// 172.16.X.X - 172.31.X.X
if (bytes[0] == 172 && bytes[1] >= 16 && bytes[1] < 32)
{
return true;
}
// 127.0.0.1
if (this->address4_.sin_addr.s_addr == 0x0100007F)
{
return true;
}
// 127.0.0.1
if (this->address4_.sin_addr.s_addr == 0x0100007F)
{
return true;
}
return false;
}
return false;
}
sockaddr& address::get_addr()
{
return this->address_;
}
sockaddr& address::get_addr()
{
return this->address_;
}
const sockaddr& address::get_addr() const
{
return this->address_;
}
const sockaddr& address::get_addr() const
{
return this->address_;
}
sockaddr_in& address::get_in_addr()
{
return this->address4_;
}
sockaddr_in& address::get_in_addr()
{
return this->address4_;
}
sockaddr_in6& address::get_in6_addr()
{
return this->address6_;
}
sockaddr_in6& address::get_in6_addr()
{
return this->address6_;
}
const sockaddr_in& address::get_in_addr() const
{
return this->address4_;
}
const sockaddr_in& address::get_in_addr() const
{
return this->address4_;
}
const sockaddr_in6& address::get_in6_addr() const
{
return this->address6_;
}
const sockaddr_in6& address::get_in6_addr() const
{
return this->address6_;
}
socklen_t address::get_size() const
{
switch (this->address_.sa_family)
{
case AF_INET:
return static_cast<socklen_t>(sizeof(this->address4_));
case AF_INET6:
return static_cast<socklen_t>(sizeof(this->address6_));
default:
return static_cast<socklen_t>(sizeof(this->address_));
}
}
socklen_t address::get_size() const
{
switch (this->address_.sa_family)
{
case AF_INET:
return static_cast<socklen_t>(sizeof(this->address4_));
case AF_INET6:
return static_cast<socklen_t>(sizeof(this->address6_));
default:
return static_cast<socklen_t>(sizeof(this->address_));
}
}
socklen_t address::get_max_size() const
{
constexpr auto s = sizeof(this->address_);
constexpr auto s4 = sizeof(this->address4_);
constexpr auto s6 = sizeof(this->address6_);
constexpr auto sstore = sizeof(this->storage_);
constexpr auto max_size = std::max(sstore, std::max(s, std::max(s4, s6)));
static_assert(max_size == sstore);
socklen_t address::get_max_size() const
{
constexpr auto s = sizeof(this->address_);
constexpr auto s4 = sizeof(this->address4_);
constexpr auto s6 = sizeof(this->address6_);
constexpr auto sstore = sizeof(this->storage_);
constexpr auto max_size = std::max(sstore, std::max(s, std::max(s4, s6)));
static_assert(max_size == sstore);
return static_cast<socklen_t>(max_size);
}
return static_cast<socklen_t>(max_size);
}
bool address::is_ipv4() const
{
return this->address_.sa_family == AF_INET;
}
bool address::is_ipv4() const
{
return this->address_.sa_family == AF_INET;
}
bool address::is_ipv6() const
{
return this->address_.sa_family == AF_INET6;
}
bool address::is_ipv6() const
{
return this->address_.sa_family == AF_INET6;
}
bool address::is_supported() const
{
return is_ipv4() || is_ipv6();
}
bool address::is_supported() const
{
return is_ipv4() || is_ipv6();
}
void address::parse(std::string addr, const std::optional<int>& family)
{
std::optional<uint16_t> port_value{};
void address::parse(std::string addr, const std::optional<int>& family)
{
std::optional<uint16_t> port_value{};
const auto pos = addr.find_last_of(':');
if (pos != std::string::npos)
{
auto port = addr.substr(pos + 1);
port_value = uint16_t(atoi(port.data()));
addr = addr.substr(0, pos);
}
const auto pos = addr.find_last_of(':');
if (pos != std::string::npos)
{
auto port = addr.substr(pos + 1);
port_value = uint16_t(atoi(port.data()));
addr = addr.substr(0, pos);
}
this->resolve(addr, family);
this->resolve(addr, family);
if (port_value)
{
this->set_port(*port_value);
}
}
if (port_value)
{
this->set_port(*port_value);
}
}
void address::resolve(const std::string& hostname, const std::optional<int>& family)
{
const auto port = this->get_port();
auto port_reset_action = utils::finally([this, port]()
{
this->set_port(port);
});
void address::resolve(const std::string& hostname, const std::optional<int>& family)
{
const auto port = this->get_port();
auto port_reset_action = utils::finally([this, port]() { this->set_port(port); });
const auto result = resolve_multiple(hostname);
for (const auto& addr : result)
{
if (addr.is_supported() && (!family || addr.get_addr().sa_family == *family))
{
this->set_address(&addr.get_addr(), addr.get_size());
return;
}
}
const auto result = resolve_multiple(hostname);
for (const auto& addr : result)
{
if (addr.is_supported() && (!family || addr.get_addr().sa_family == *family))
{
this->set_address(&addr.get_addr(), addr.get_size());
return;
}
}
port_reset_action.cancel();
throw std::runtime_error{"Unable to resolve hostname: " + hostname};
}
port_reset_action.cancel();
throw std::runtime_error{"Unable to resolve hostname: " + hostname};
}
std::vector<address> address::resolve_multiple(const std::string& hostname)
{
std::vector<address> results{};
std::vector<address> address::resolve_multiple(const std::string& hostname)
{
std::vector<address> results{};
addrinfo* result = nullptr;
if (!getaddrinfo(hostname.data(), nullptr, nullptr, &result))
{
const auto _2 = utils::finally([&result]
{
freeaddrinfo(result);
});
addrinfo* result = nullptr;
if (!getaddrinfo(hostname.data(), nullptr, nullptr, &result))
{
const auto _2 = utils::finally([&result] { freeaddrinfo(result); });
for (auto* i = result; i; i = i->ai_next)
{
if (i->ai_family == AF_INET || i->ai_family == AF_INET6)
{
address a{};
a.set_address(i->ai_addr, static_cast<socklen_t>(i->ai_addrlen));
results.emplace_back(std::move(a));
}
}
}
for (auto* i = result; i; i = i->ai_next)
{
if (i->ai_family == AF_INET || i->ai_family == AF_INET6)
{
address a{};
a.set_address(i->ai_addr, static_cast<socklen_t>(i->ai_addrlen));
results.emplace_back(std::move(a));
}
}
}
return results;
}
return results;
}
}
std::size_t std::hash<network::address>::operator()(const network::address& a) const noexcept
{
const uint32_t family = a.get_addr().sa_family;
const uint32_t port = a.get_port();
const uint32_t family = a.get_addr().sa_family;
const uint32_t port = a.get_port();
std::size_t hash = std::hash<uint32_t>{}(family);
hash ^= std::hash<uint32_t>{}(port);
switch (a.get_addr().sa_family)
{
case AF_INET:
hash ^= std::hash<decltype(a.get_in_addr().sin_addr.s_addr)>{}(a.get_in_addr().sin_addr.s_addr);
break;
case AF_INET6:
hash ^= std::hash<std::string_view>{}(std::string_view{
reinterpret_cast<const char*>(a.get_in6_addr().sin6_addr.s6_addr),
sizeof(a.get_in6_addr().sin6_addr.s6_addr)
});
break;
}
std::size_t hash = std::hash<uint32_t>{}(family);
hash ^= std::hash<uint32_t>{}(port);
switch (a.get_addr().sa_family)
{
case AF_INET:
hash ^= std::hash<decltype(a.get_in_addr().sin_addr.s_addr)>{}(a.get_in_addr().sin_addr.s_addr);
break;
case AF_INET6:
hash ^= std::hash<std::string_view>{}(
std::string_view{reinterpret_cast<const char*>(a.get_in6_addr().sin6_addr.s6_addr),
sizeof(a.get_in6_addr().sin6_addr.s6_addr)});
break;
}
return hash;
return hash;
}

View File

@@ -36,71 +36,71 @@ using socklen_t = int;
namespace network
{
void initialize_wsa();
void initialize_wsa();
class address
{
public:
address();
address(const std::string& addr, const std::optional<int>& family = {});
address(const sockaddr_in& addr);
address(const sockaddr_in6& addr);
address(const sockaddr* addr, socklen_t length);
class address
{
public:
address();
address(const std::string& addr, const std::optional<int>& family = {});
address(const sockaddr_in& addr);
address(const sockaddr_in6& addr);
address(const sockaddr* addr, socklen_t length);
void set_ipv4(uint32_t ip);
void set_ipv4(const in_addr& addr);
void set_ipv6(const in6_addr& addr);
void set_address(const sockaddr* addr, socklen_t length);
void set_ipv4(uint32_t ip);
void set_ipv4(const in_addr& addr);
void set_ipv6(const in6_addr& addr);
void set_address(const sockaddr* addr, socklen_t length);
void set_port(unsigned short port);
[[nodiscard]] unsigned short get_port() const;
void set_port(unsigned short port);
[[nodiscard]] unsigned short get_port() const;
sockaddr& get_addr();
sockaddr_in& get_in_addr();
sockaddr_in6& get_in6_addr();
sockaddr& get_addr();
sockaddr_in& get_in_addr();
sockaddr_in6& get_in6_addr();
const sockaddr& get_addr() const;
const sockaddr_in& get_in_addr() const;
const sockaddr_in6& get_in6_addr() const;
const sockaddr& get_addr() const;
const sockaddr_in& get_in_addr() const;
const sockaddr_in6& get_in6_addr() const;
socklen_t get_size() const;
socklen_t get_max_size() const;
socklen_t get_size() const;
socklen_t get_max_size() const;
bool is_ipv4() const;
bool is_ipv6() const;
bool is_supported() const;
bool is_ipv4() const;
bool is_ipv6() const;
bool is_supported() const;
[[nodiscard]] bool is_local() const;
[[nodiscard]] std::string to_string() const;
[[nodiscard]] bool is_local() const;
[[nodiscard]] std::string to_string() const;
bool operator==(const address& obj) const;
bool operator==(const address& obj) const;
bool operator!=(const address& obj) const
{
return !(*this == obj);
}
bool operator!=(const address& obj) const
{
return !(*this == obj);
}
static std::vector<address> resolve_multiple(const std::string& hostname);
static std::vector<address> resolve_multiple(const std::string& hostname);
private:
union
{
sockaddr address_;
sockaddr_in address4_;
sockaddr_in6 address6_;
sockaddr_storage storage_;
};
private:
union
{
sockaddr address_;
sockaddr_in address4_;
sockaddr_in6 address6_;
sockaddr_storage storage_;
};
void parse(std::string addr, const std::optional<int>& family = {});
void resolve(const std::string& hostname, const std::optional<int>& family = {});
};
void parse(std::string addr, const std::optional<int>& family = {});
void resolve(const std::string& hostname, const std::optional<int>& family = {});
};
}
namespace std
{
template <>
struct hash<network::address>
{
std::size_t operator()(const network::address& a) const noexcept;
};
template <>
struct hash<network::address>
{
std::size_t operator()(const network::address& a) const noexcept;
};
}

View File

@@ -6,226 +6,225 @@ using namespace std::literals;
namespace network
{
socket::socket(const int af)
: address_family_(af)
{
initialize_wsa();
this->socket_ = ::socket(af, SOCK_DGRAM, IPPROTO_UDP);
socket::socket(const int af)
: address_family_(af)
{
initialize_wsa();
this->socket_ = ::socket(af, SOCK_DGRAM, IPPROTO_UDP);
if (af == AF_INET6)
{
int i = 1;
setsockopt(this->socket_, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast<char*>(&i),
static_cast<int>(sizeof(i)));
}
}
if (af == AF_INET6)
{
int i = 1;
setsockopt(this->socket_, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast<char*>(&i),
static_cast<int>(sizeof(i)));
}
}
socket::~socket()
{
this->release();
}
socket::~socket()
{
this->release();
}
socket::socket(socket&& obj) noexcept
{
this->operator=(std::move(obj));
}
socket::socket(socket&& obj) noexcept
{
this->operator=(std::move(obj));
}
socket& socket::operator=(socket&& obj) noexcept
{
if (this != &obj)
{
this->release();
this->socket_ = obj.socket_;
this->port_ = obj.port_;
this->address_family_ = obj.address_family_;
socket& socket::operator=(socket&& obj) noexcept
{
if (this != &obj)
{
this->release();
this->socket_ = obj.socket_;
this->port_ = obj.port_;
this->address_family_ = obj.address_family_;
obj.socket_ = INVALID_SOCKET;
obj.address_family_ = AF_UNSPEC;
}
obj.socket_ = INVALID_SOCKET;
obj.address_family_ = AF_UNSPEC;
}
return *this;
}
return *this;
}
void socket::release()
{
if (this->socket_ != INVALID_SOCKET)
{
closesocket(this->socket_);
this->socket_ = INVALID_SOCKET;
}
}
void socket::release()
{
if (this->socket_ != INVALID_SOCKET)
{
closesocket(this->socket_);
this->socket_ = INVALID_SOCKET;
}
}
bool socket::bind_port(const address& target)
{
const auto result = bind(this->socket_, &target.get_addr(), target.get_size()) == 0;
if (result)
{
this->port_ = target.get_port();
}
bool socket::bind_port(const address& target)
{
const auto result = bind(this->socket_, &target.get_addr(), target.get_size()) == 0;
if (result)
{
this->port_ = target.get_port();
}
return result;
}
return result;
}
bool socket::send(const address& target, const void* data, const size_t size) const
{
const auto res = sendto(this->socket_, static_cast<const char*>(data), static_cast<send_size>(size), 0,
&target.get_addr(),
target.get_size());
return static_cast<size_t>(res) == size;
}
bool socket::send(const address& target, const void* data, const size_t size) const
{
const auto res = sendto(this->socket_, static_cast<const char*>(data), static_cast<send_size>(size), 0,
&target.get_addr(), target.get_size());
return static_cast<size_t>(res) == size;
}
bool socket::send(const address& target, const std::string& data) const
{
return this->send(target, data.data(), data.size());
}
bool socket::send(const address& target, const std::string& data) const
{
return this->send(target, data.data(), data.size());
}
bool socket::receive(address& source, std::string& data) const
{
char buffer[0x2000];
auto len = source.get_max_size();
bool socket::receive(address& source, std::string& data) const
{
char buffer[0x2000];
auto len = source.get_max_size();
const auto result = recvfrom(this->socket_, buffer, static_cast<int>(sizeof(buffer)), 0, &source.get_addr(),
&len);
if (result == SOCKET_ERROR)
{
return false;
}
const auto result =
recvfrom(this->socket_, buffer, static_cast<int>(sizeof(buffer)), 0, &source.get_addr(), &len);
if (result == SOCKET_ERROR)
{
return false;
}
data.assign(buffer, buffer + result);
return true;
}
data.assign(buffer, buffer + result);
return true;
}
bool socket::set_blocking(const bool blocking)
{
return socket::set_blocking(this->socket_, blocking);
}
bool socket::set_blocking(const bool blocking)
{
return socket::set_blocking(this->socket_, blocking);
}
bool socket::set_blocking(SOCKET s, const bool blocking)
{
bool socket::set_blocking(SOCKET s, const bool blocking)
{
#ifdef _WIN32
unsigned long mode = blocking ? 0 : 1;
return ioctlsocket(s, FIONBIO, &mode) == 0;
unsigned long mode = blocking ? 0 : 1;
return ioctlsocket(s, FIONBIO, &mode) == 0;
#else
int flags = fcntl(s, F_GETFL, 0);
if (flags == -1) return false;
flags = blocking ? (flags & ~O_NONBLOCK) : (flags | O_NONBLOCK);
return fcntl(s, F_SETFL, flags) == 0;
int flags = fcntl(s, F_GETFL, 0);
if (flags == -1)
return false;
flags = blocking ? (flags & ~O_NONBLOCK) : (flags | O_NONBLOCK);
return fcntl(s, F_SETFL, flags) == 0;
#endif
}
}
bool socket::sleep(const std::chrono::milliseconds timeout) const
{
/*fd_set fdr;
FD_ZERO(&fdr);
FD_SET(this->socket_, &fdr);
bool socket::sleep(const std::chrono::milliseconds timeout) const
{
/*fd_set fdr;
FD_ZERO(&fdr);
FD_SET(this->socket_, &fdr);
const auto msec = timeout.count();
const auto msec = timeout.count();
timeval tv{};
tv.tv_sec = static_cast<long>(msec / 1000ll);
tv.tv_usec = static_cast<long>((msec % 1000) * 1000);
timeval tv{};
tv.tv_sec = static_cast<long>(msec / 1000ll);
tv.tv_usec = static_cast<long>((msec % 1000) * 1000);
const auto retval = select(static_cast<int>(this->socket_) + 1, &fdr, nullptr, nullptr, &tv);
if (retval == SOCKET_ERROR)
{
std::this_thread::sleep_for(1ms);
return socket_is_ready;
}
const auto retval = select(static_cast<int>(this->socket_) + 1, &fdr, nullptr, nullptr, &tv);
if (retval == SOCKET_ERROR)
{
std::this_thread::sleep_for(1ms);
return socket_is_ready;
}
if (retval > 0)
{
return socket_is_ready;
}
if (retval > 0)
{
return socket_is_ready;
}
return !socket_is_ready;*/
return !socket_is_ready;*/
std::vector<const socket*> sockets{};
sockets.push_back(this);
std::vector<const socket*> sockets{};
sockets.push_back(this);
return sleep_sockets(sockets, timeout);
}
return sleep_sockets(sockets, timeout);
}
bool socket::sleep_until(const std::chrono::high_resolution_clock::time_point time_point) const
{
const auto duration = time_point - std::chrono::high_resolution_clock::now();
return this->sleep(std::chrono::duration_cast<std::chrono::milliseconds>(duration));
}
bool socket::sleep_until(const std::chrono::high_resolution_clock::time_point time_point) const
{
const auto duration = time_point - std::chrono::high_resolution_clock::now();
return this->sleep(std::chrono::duration_cast<std::chrono::milliseconds>(duration));
}
SOCKET socket::get_socket() const
{
return this->socket_;
}
SOCKET socket::get_socket() const
{
return this->socket_;
}
uint16_t socket::get_port() const
{
return this->port_;
}
uint16_t socket::get_port() const
{
return this->port_;
}
int socket::get_address_family() const
{
return this->address_family_;
}
int socket::get_address_family() const
{
return this->address_family_;
}
bool socket::sleep_sockets(const std::span<const socket*>& sockets, const std::chrono::milliseconds timeout)
{
std::vector<pollfd> pfds{};
pfds.resize(sockets.size());
bool socket::sleep_sockets(const std::span<const socket*>& sockets, const std::chrono::milliseconds timeout)
{
std::vector<pollfd> pfds{};
pfds.resize(sockets.size());
for (size_t i = 0; i < sockets.size(); ++i)
{
auto& pfd = pfds.at(i);
const auto& socket = sockets[i];
for (size_t i = 0; i < sockets.size(); ++i)
{
auto& pfd = pfds.at(i);
const auto& socket = sockets[i];
pfd.fd = socket->get_socket();
pfd.events = POLLIN;
pfd.revents = 0;
}
pfd.fd = socket->get_socket();
pfd.events = POLLIN;
pfd.revents = 0;
}
const auto retval = poll(pfds.data(), static_cast<uint32_t>(pfds.size()),
static_cast<int>(timeout.count()));
const auto retval = poll(pfds.data(), static_cast<uint32_t>(pfds.size()), static_cast<int>(timeout.count()));
if (retval == SOCKET_ERROR)
{
std::this_thread::sleep_for(1ms);
return socket_is_ready;
}
if (retval == SOCKET_ERROR)
{
std::this_thread::sleep_for(1ms);
return socket_is_ready;
}
if (retval > 0)
{
return socket_is_ready;
}
if (retval > 0)
{
return socket_is_ready;
}
return !socket_is_ready;
}
return !socket_is_ready;
}
bool socket::is_socket_ready(const SOCKET s, const bool in_poll)
{
pollfd pfd{};
bool socket::is_socket_ready(const SOCKET s, const bool in_poll)
{
pollfd pfd{};
pfd.fd = s;
pfd.events = in_poll ? POLLIN : POLLOUT;
pfd.revents = 0;
pfd.fd = s;
pfd.events = in_poll ? POLLIN : POLLOUT;
pfd.revents = 0;
const auto retval = poll(&pfd, 1, 0);
const auto retval = poll(&pfd, 1, 0);
if (retval == SOCKET_ERROR)
{
std::this_thread::sleep_for(1ms);
return socket_is_ready;
}
if (retval == SOCKET_ERROR)
{
std::this_thread::sleep_for(1ms);
return socket_is_ready;
}
if (retval > 0)
{
return socket_is_ready;
}
if (retval > 0)
{
return socket_is_ready;
}
return !socket_is_ready;
}
return !socket_is_ready;
}
bool socket::sleep_sockets_until(const std::span<const socket*>& sockets,
const std::chrono::high_resolution_clock::time_point time_point)
{
const auto duration = time_point - std::chrono::high_resolution_clock::now();
return sleep_sockets(sockets, std::chrono::duration_cast<std::chrono::milliseconds>(duration));
}
bool socket::sleep_sockets_until(const std::span<const socket*>& sockets,
const std::chrono::high_resolution_clock::time_point time_point)
{
const auto duration = time_point - std::chrono::high_resolution_clock::now();
return sleep_sockets(sockets, std::chrono::duration_cast<std::chrono::milliseconds>(duration));
}
}

View File

@@ -8,63 +8,63 @@
#ifdef _WIN32
using send_size = int;
#define GET_SOCKET_ERROR() (WSAGetLastError())
#define poll WSAPoll
#define SOCK_WOULDBLOCK WSAEWOULDBLOCK
#define poll WSAPoll
#define SOCK_WOULDBLOCK WSAEWOULDBLOCK
#else
using SOCKET = int;
using send_size = size_t;
#define INVALID_SOCKET (SOCKET)(~0)
#define SOCKET_ERROR (-1)
#define INVALID_SOCKET (SOCKET)(~0)
#define SOCKET_ERROR (-1)
#define GET_SOCKET_ERROR() (errno)
#define closesocket close
#define SOCK_WOULDBLOCK EWOULDBLOCK
#define closesocket close
#define SOCK_WOULDBLOCK EWOULDBLOCK
#endif
namespace network
{
class socket
{
public:
socket() = default;
class socket
{
public:
socket() = default;
socket(int af);
~socket();
socket(int af);
~socket();
socket(const socket& obj) = delete;
socket& operator=(const socket& obj) = delete;
socket(const socket& obj) = delete;
socket& operator=(const socket& obj) = delete;
socket(socket&& obj) noexcept;
socket& operator=(socket&& obj) noexcept;
socket(socket&& obj) noexcept;
socket& operator=(socket&& obj) noexcept;
bool bind_port(const address& target);
bool bind_port(const address& target);
[[maybe_unused]] bool send(const address& target, const void* data, size_t size) const;
[[maybe_unused]] bool send(const address& target, const std::string& data) const;
bool receive(address& source, std::string& data) const;
[[maybe_unused]] bool send(const address& target, const void* data, size_t size) const;
[[maybe_unused]] bool send(const address& target, const std::string& data) const;
bool receive(address& source, std::string& data) const;
bool set_blocking(bool blocking);
static bool set_blocking(SOCKET s, bool blocking);
bool set_blocking(bool blocking);
static bool set_blocking(SOCKET s, bool blocking);
static constexpr bool socket_is_ready = true;
bool sleep(std::chrono::milliseconds timeout) const;
bool sleep_until(std::chrono::high_resolution_clock::time_point time_point) const;
static constexpr bool socket_is_ready = true;
bool sleep(std::chrono::milliseconds timeout) const;
bool sleep_until(std::chrono::high_resolution_clock::time_point time_point) const;
SOCKET get_socket() const;
uint16_t get_port() const;
SOCKET get_socket() const;
uint16_t get_port() const;
int get_address_family() const;
int get_address_family() const;
static bool sleep_sockets(const std::span<const socket*>& sockets, std::chrono::milliseconds timeout);
static bool sleep_sockets_until(const std::span<const socket*>& sockets,
std::chrono::high_resolution_clock::time_point time_point);
static bool sleep_sockets(const std::span<const socket*>& sockets, std::chrono::milliseconds timeout);
static bool sleep_sockets_until(const std::span<const socket*>& sockets,
std::chrono::high_resolution_clock::time_point time_point);
static bool is_socket_ready(SOCKET s, bool in_poll);
static bool is_socket_ready(SOCKET s, bool in_poll);
private:
int address_family_{AF_UNSPEC};
uint16_t port_ = 0;
SOCKET socket_ = INVALID_SOCKET;
private:
int address_family_{AF_UNSPEC};
uint16_t port_ = 0;
SOCKET socket_ = INVALID_SOCKET;
void release();
};
void release();
};
}

View File

@@ -3,7 +3,7 @@
#if defined(_WIN32) || defined(_WIN64)
#define OS_WINDOWS
#elif defined(__APPLE__) || defined(__MACH__)
#define OS_MAC
#define OS_MAC
#elif defined(__linux__)
#define OS_LINUX
#else
@@ -11,9 +11,9 @@
#endif
#ifdef OS_WINDOWS
#define EXPORT_SYMBOL __declspec(dllexport)
#define IMPORT_SYMBOL __declspec(dllimport)
#define NO_INLINE __declspec(noinline)
#define EXPORT_SYMBOL __declspec(dllexport)
#define IMPORT_SYMBOL __declspec(dllimport)
#define NO_INLINE __declspec(noinline)
#define DECLSPEC_ALIGN(n) __declspec(align(n))
@@ -24,21 +24,21 @@
#define EXPORT_SYMBOL __attribute__((visibility("default")))
#define IMPORT_SYMBOL
#define NO_INLINE __attribute__((noinline))
#define NO_INLINE __attribute__((noinline))
#define DECLSPEC_ALIGN(n) alignas(n)
#define fopen_s fopen
#define DECLSPEC_ALIGN(n) alignas(n)
#define fopen_s fopen
#define RESTRICTED_POINTER __restrict
#ifdef OS_MAC
#define _fseeki64 fseeko
#define _ftelli64 ftello
#define _stat64 stat
#define _stat64 stat
#else
#define _fseeki64 fseeko64
#define _ftelli64 ftello64
#define _stat64 stat64
#define _stat64 stat64
#endif
#endif

View File

@@ -1,246 +1,250 @@
#pragma once
#define ACCESS_MASK DWORD
#define DEVICE_TYPE DWORD
#define ACCESS_MASK DWORD
#define DEVICE_TYPE DWORD
#define FILE_DEVICE_DISK 0x00000007
#define FILE_DEVICE_CONSOLE 0x00000050
#define FILE_DEVICE_DISK 0x00000007
#define FILE_DEVICE_CONSOLE 0x00000050
#define FILE_SUPERSEDE 0x00000000
#define FILE_OPEN 0x00000001
#define FILE_CREATE 0x00000002
#define FILE_OPEN_IF 0x00000003
#define FILE_OVERWRITE 0x00000004
#define FILE_OVERWRITE_IF 0x00000005
#define FILE_MAXIMUM_DISPOSITION 0x00000005
#define FILE_SUPERSEDE 0x00000000
#define FILE_OPEN 0x00000001
#define FILE_CREATE 0x00000002
#define FILE_OPEN_IF 0x00000003
#define FILE_OVERWRITE 0x00000004
#define FILE_OVERWRITE_IF 0x00000005
#define FILE_MAXIMUM_DISPOSITION 0x00000005
#ifndef OS_WINDOWS
#define GENERIC_READ 0x80000000
#define GENERIC_WRITE 0x40000000
#define GENERIC_EXECUTE 0x20000000
#define GENERIC_ALL 0x10000000
#define GENERIC_READ 0x80000000
#define GENERIC_WRITE 0x40000000
#define GENERIC_EXECUTE 0x20000000
#define GENERIC_ALL 0x10000000
#undef DELETE
#define DELETE 0x00010000
#define READ_CONTROL 0x00020000
#define WRITE_DAC 0x00040000
#define WRITE_OWNER 0x00080000
#define SYNCHRONIZE 0x00100000
#define STANDARD_RIGHTS_REQUIRED 0x000f0000
#undef DELETE
#define DELETE 0x00010000
#define READ_CONTROL 0x00020000
#define WRITE_DAC 0x00040000
#define WRITE_OWNER 0x00080000
#define SYNCHRONIZE 0x00100000
#define STANDARD_RIGHTS_REQUIRED 0x000f0000
#define FILE_READ_DATA 0x0001 /* file & pipe */
#define FILE_LIST_DIRECTORY 0x0001 /* directory */
#define FILE_WRITE_DATA 0x0002 /* file & pipe */
#define FILE_ADD_FILE 0x0002 /* directory */
#define FILE_APPEND_DATA 0x0004 /* file */
#define FILE_ADD_SUBDIRECTORY 0x0004 /* directory */
#define FILE_CREATE_PIPE_INSTANCE 0x0004 /* named pipe */
#define FILE_READ_EA 0x0008 /* file & directory */
#define FILE_READ_DATA 0x0001 /* file & pipe */
#define FILE_LIST_DIRECTORY 0x0001 /* directory */
#define FILE_WRITE_DATA 0x0002 /* file & pipe */
#define FILE_ADD_FILE 0x0002 /* directory */
#define FILE_APPEND_DATA 0x0004 /* file */
#define FILE_ADD_SUBDIRECTORY 0x0004 /* directory */
#define FILE_CREATE_PIPE_INSTANCE 0x0004 /* named pipe */
#define FILE_READ_EA 0x0008 /* file & directory */
#define FILE_READ_PROPERTIES FILE_READ_EA
#define FILE_WRITE_EA 0x0010 /* file & directory */
#define FILE_WRITE_EA 0x0010 /* file & directory */
#define FILE_WRITE_PROPERTIES FILE_WRITE_EA
#define FILE_EXECUTE 0x0020 /* file */
#define FILE_TRAVERSE 0x0020 /* directory */
#define FILE_DELETE_CHILD 0x0040 /* directory */
#define FILE_READ_ATTRIBUTES 0x0080 /* all */
#define FILE_WRITE_ATTRIBUTES 0x0100 /* all */
#define FILE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED|SYNCHRONIZE|0x1ff)
#define FILE_EXECUTE 0x0020 /* file */
#define FILE_TRAVERSE 0x0020 /* directory */
#define FILE_DELETE_CHILD 0x0040 /* directory */
#define FILE_READ_ATTRIBUTES 0x0080 /* all */
#define FILE_WRITE_ATTRIBUTES 0x0100 /* all */
#define FILE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | 0x1ff)
#endif
#define FILE_DIRECTORY_FILE 0x00000001
#define FILE_WRITE_THROUGH 0x00000002
#define FILE_SEQUENTIAL_ONLY 0x00000004
#define FILE_NO_INTERMEDIATE_BUFFERING 0x00000008
#define FILE_DIRECTORY_FILE 0x00000001
#define FILE_WRITE_THROUGH 0x00000002
#define FILE_SEQUENTIAL_ONLY 0x00000004
#define FILE_NO_INTERMEDIATE_BUFFERING 0x00000008
#define FILE_SYNCHRONOUS_IO_ALERT 0x00000010
#define FILE_SYNCHRONOUS_IO_NONALERT 0x00000020
#define FILE_NON_DIRECTORY_FILE 0x00000040
#define FILE_CREATE_TREE_CONNECTION 0x00000080
#define FILE_SYNCHRONOUS_IO_ALERT 0x00000010
#define FILE_SYNCHRONOUS_IO_NONALERT 0x00000020
#define FILE_NON_DIRECTORY_FILE 0x00000040
#define FILE_CREATE_TREE_CONNECTION 0x00000080
#define FILE_ATTRIBUTE_NORMAL 0x00000080
#define FILE_ATTRIBUTE_NORMAL 0x00000080
#define PS_ATTRIBUTE_NUMBER_MASK 0x0000ffff
#define PS_ATTRIBUTE_THREAD 0x00010000 // may be used with thread creation
#define PS_ATTRIBUTE_INPUT 0x00020000 // input only
#define PS_ATTRIBUTE_ADDITIVE 0x00040000 // "accumulated" e.g. bitmasks, counters, etc.
#define PS_ATTRIBUTE_NUMBER_MASK 0x0000ffff
#define PS_ATTRIBUTE_THREAD 0x00010000 // may be used with thread creation
#define PS_ATTRIBUTE_INPUT 0x00020000 // input only
#define PS_ATTRIBUTE_ADDITIVE 0x00040000 // "accumulated" e.g. bitmasks, counters, etc.
#define SL_RESTART_SCAN 0x01
#define SL_RETURN_SINGLE_ENTRY 0x02
#define SL_NO_CURSOR_UPDATE 0x10
#define SL_RESTART_SCAN 0x01
#define SL_RETURN_SINGLE_ENTRY 0x02
#define SL_NO_CURSOR_UPDATE 0x10
#define SEC_IMAGE 0x01000000
#define SEC_IMAGE 0x01000000
typedef enum _FSINFOCLASS
{
FileFsVolumeInformation = 1, // q: FILE_FS_VOLUME_INFORMATION
FileFsLabelInformation, // s: FILE_FS_LABEL_INFORMATION (requires FILE_WRITE_DATA to volume)
FileFsSizeInformation, // q: FILE_FS_SIZE_INFORMATION
FileFsDeviceInformation, // q: FILE_FS_DEVICE_INFORMATION
FileFsAttributeInformation, // q: FILE_FS_ATTRIBUTE_INFORMATION
FileFsControlInformation,
// q, s: FILE_FS_CONTROL_INFORMATION (q: requires FILE_READ_DATA; s: requires FILE_WRITE_DATA to volume)
FileFsFullSizeInformation, // q: FILE_FS_FULL_SIZE_INFORMATION
FileFsObjectIdInformation, // q; s: FILE_FS_OBJECTID_INFORMATION (s: requires FILE_WRITE_DATA to volume)
FileFsDriverPathInformation, // q: FILE_FS_DRIVER_PATH_INFORMATION
FileFsVolumeFlagsInformation,
// q; s: FILE_FS_VOLUME_FLAGS_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES to volume) // 10
FileFsSectorSizeInformation, // q: FILE_FS_SECTOR_SIZE_INFORMATION // since WIN8
FileFsDataCopyInformation, // q: FILE_FS_DATA_COPY_INFORMATION
FileFsMetadataSizeInformation, // q: FILE_FS_METADATA_SIZE_INFORMATION // since THRESHOLD
FileFsFullSizeInformationEx, // q: FILE_FS_FULL_SIZE_INFORMATION_EX // since REDSTONE5
FileFsGuidInformation, // q: FILE_FS_GUID_INFORMATION // since 23H2
FileFsMaximumInformation
FileFsVolumeInformation = 1, // q: FILE_FS_VOLUME_INFORMATION
FileFsLabelInformation, // s: FILE_FS_LABEL_INFORMATION (requires FILE_WRITE_DATA to volume)
FileFsSizeInformation, // q: FILE_FS_SIZE_INFORMATION
FileFsDeviceInformation, // q: FILE_FS_DEVICE_INFORMATION
FileFsAttributeInformation, // q: FILE_FS_ATTRIBUTE_INFORMATION
FileFsControlInformation,
// q, s: FILE_FS_CONTROL_INFORMATION (q: requires FILE_READ_DATA; s: requires FILE_WRITE_DATA to volume)
FileFsFullSizeInformation, // q: FILE_FS_FULL_SIZE_INFORMATION
FileFsObjectIdInformation, // q; s: FILE_FS_OBJECTID_INFORMATION (s: requires FILE_WRITE_DATA to volume)
FileFsDriverPathInformation, // q: FILE_FS_DRIVER_PATH_INFORMATION
FileFsVolumeFlagsInformation,
// q; s: FILE_FS_VOLUME_FLAGS_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES to
// volume) // 10
FileFsSectorSizeInformation, // q: FILE_FS_SECTOR_SIZE_INFORMATION // since WIN8
FileFsDataCopyInformation, // q: FILE_FS_DATA_COPY_INFORMATION
FileFsMetadataSizeInformation, // q: FILE_FS_METADATA_SIZE_INFORMATION // since THRESHOLD
FileFsFullSizeInformationEx, // q: FILE_FS_FULL_SIZE_INFORMATION_EX // since REDSTONE5
FileFsGuidInformation, // q: FILE_FS_GUID_INFORMATION // since 23H2
FileFsMaximumInformation
} FSINFOCLASS, *PFSINFOCLASS;
typedef enum _FSINFOCLASS FS_INFORMATION_CLASS;
typedef enum _FILE_INFORMATION_CLASS
{
FileDirectoryInformation = 1,
// q: FILE_DIRECTORY_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileFullDirectoryInformation,
// q: FILE_FULL_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileBothDirectoryInformation,
// q: FILE_BOTH_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileBasicInformation,
// q; s: FILE_BASIC_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FileStandardInformation, // q: FILE_STANDARD_INFORMATION, FILE_STANDARD_INFORMATION_EX
FileInternalInformation, // q: FILE_INTERNAL_INFORMATION
FileEaInformation, // q: FILE_EA_INFORMATION
FileAccessInformation, // q: FILE_ACCESS_INFORMATION
FileNameInformation, // q: FILE_NAME_INFORMATION
FileRenameInformation, // s: FILE_RENAME_INFORMATION (requires DELETE) // 10
FileLinkInformation, // s: FILE_LINK_INFORMATION
FileNamesInformation, // q: FILE_NAMES_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileDispositionInformation, // s: FILE_DISPOSITION_INFORMATION (requires DELETE)
FilePositionInformation, // q; s: FILE_POSITION_INFORMATION
FileFullEaInformation, // FILE_FULL_EA_INFORMATION
FileModeInformation, // q; s: FILE_MODE_INFORMATION
FileAlignmentInformation, // q: FILE_ALIGNMENT_INFORMATION
FileAllInformation, // q: FILE_ALL_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileAllocationInformation, // s: FILE_ALLOCATION_INFORMATION (requires FILE_WRITE_DATA)
FileEndOfFileInformation, // s: FILE_END_OF_FILE_INFORMATION (requires FILE_WRITE_DATA) // 20
FileAlternateNameInformation, // q: FILE_NAME_INFORMATION
FileStreamInformation, // q: FILE_STREAM_INFORMATION
FilePipeInformation,
// q; s: FILE_PIPE_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FilePipeLocalInformation, // q: FILE_PIPE_LOCAL_INFORMATION (requires FILE_READ_ATTRIBUTES)
FilePipeRemoteInformation,
// q; s: FILE_PIPE_REMOTE_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FileMailslotQueryInformation, // q: FILE_MAILSLOT_QUERY_INFORMATION
FileMailslotSetInformation, // s: FILE_MAILSLOT_SET_INFORMATION
FileCompressionInformation, // q: FILE_COMPRESSION_INFORMATION
FileObjectIdInformation, // q: FILE_OBJECTID_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileCompletionInformation, // s: FILE_COMPLETION_INFORMATION // 30
FileMoveClusterInformation, // s: FILE_MOVE_CLUSTER_INFORMATION (requires FILE_WRITE_DATA)
FileQuotaInformation, // q: FILE_QUOTA_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileReparsePointInformation,
// q: FILE_REPARSE_POINT_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileNetworkOpenInformation, // q: FILE_NETWORK_OPEN_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileAttributeTagInformation, // q: FILE_ATTRIBUTE_TAG_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileTrackingInformation, // s: FILE_TRACKING_INFORMATION (requires FILE_WRITE_DATA)
FileIdBothDirectoryInformation,
// q: FILE_ID_BOTH_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileIdFullDirectoryInformation,
// q: FILE_ID_FULL_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileValidDataLengthInformation,
// s: FILE_VALID_DATA_LENGTH_INFORMATION (requires FILE_WRITE_DATA and/or SeManageVolumePrivilege)
FileShortNameInformation, // s: FILE_NAME_INFORMATION (requires DELETE) // 40
FileIoCompletionNotificationInformation,
// q; s: FILE_IO_COMPLETION_NOTIFICATION_INFORMATION (q: requires FILE_READ_ATTRIBUTES) // since VISTA
FileIoStatusBlockRangeInformation, // s: FILE_IOSTATUSBLOCK_RANGE_INFORMATION (requires SeLockMemoryPrivilege)
FileIoPriorityHintInformation,
// q; s: FILE_IO_PRIORITY_HINT_INFORMATION, FILE_IO_PRIORITY_HINT_INFORMATION_EX (q: requires FILE_READ_DATA)
FileSfioReserveInformation, // q; s: FILE_SFIO_RESERVE_INFORMATION (q: requires FILE_READ_DATA)
FileSfioVolumeInformation, // q: FILE_SFIO_VOLUME_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileHardLinkInformation, // q: FILE_LINKS_INFORMATION
FileProcessIdsUsingFileInformation, // q: FILE_PROCESS_IDS_USING_FILE_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileNormalizedNameInformation, // q: FILE_NAME_INFORMATION
FileNetworkPhysicalNameInformation, // q: FILE_NETWORK_PHYSICAL_NAME_INFORMATION
FileIdGlobalTxDirectoryInformation,
// q: FILE_ID_GLOBAL_TX_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex]) // since WIN7 // 50
FileIsRemoteDeviceInformation, // q: FILE_IS_REMOTE_DEVICE_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileUnusedInformation,
FileNumaNodeInformation, // q: FILE_NUMA_NODE_INFORMATION
FileStandardLinkInformation, // q: FILE_STANDARD_LINK_INFORMATION
FileRemoteProtocolInformation, // q: FILE_REMOTE_PROTOCOL_INFORMATION
FileRenameInformationBypassAccessCheck, // (kernel-mode only); s: FILE_RENAME_INFORMATION // since WIN8
FileLinkInformationBypassAccessCheck, // (kernel-mode only); s: FILE_LINK_INFORMATION
FileVolumeNameInformation, // q: FILE_VOLUME_NAME_INFORMATION
FileIdInformation, // q: FILE_ID_INFORMATION
FileIdExtdDirectoryInformation,
// q: FILE_ID_EXTD_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex]) // 60
FileReplaceCompletionInformation, // s: FILE_COMPLETION_INFORMATION // since WINBLUE
FileHardLinkFullIdInformation, // q: FILE_LINK_ENTRY_FULL_ID_INFORMATION // FILE_LINKS_FULL_ID_INFORMATION
FileIdExtdBothDirectoryInformation,
// q: FILE_ID_EXTD_BOTH_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex]) // since THRESHOLD
FileDispositionInformationEx, // s: FILE_DISPOSITION_INFO_EX (requires DELETE) // since REDSTONE
FileRenameInformationEx, // s: FILE_RENAME_INFORMATION_EX
FileRenameInformationExBypassAccessCheck, // (kernel-mode only); s: FILE_RENAME_INFORMATION_EX
FileDesiredStorageClassInformation,
// q; s: FILE_DESIRED_STORAGE_CLASS_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES) // since REDSTONE2
FileStatInformation, // q: FILE_STAT_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileMemoryPartitionInformation, // s: FILE_MEMORY_PARTITION_INFORMATION // since REDSTONE3
FileStatLxInformation,
// q: FILE_STAT_LX_INFORMATION (requires FILE_READ_ATTRIBUTES and FILE_READ_EA) // since REDSTONE4 // 70
FileCaseSensitiveInformation,
// q; s: FILE_CASE_SENSITIVE_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FileLinkInformationEx, // s: FILE_LINK_INFORMATION_EX // since REDSTONE5
FileLinkInformationExBypassAccessCheck, // (kernel-mode only); s: FILE_LINK_INFORMATION_EX
FileStorageReserveIdInformation,
// q; s: FILE_STORAGE_RESERVE_ID_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FileCaseSensitiveInformationForceAccessCheck, // q; s: FILE_CASE_SENSITIVE_INFORMATION
FileKnownFolderInformation,
// q; s: FILE_KNOWN_FOLDER_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES) // since WIN11
FileStatBasicInformation, // since 23H2
FileId64ExtdDirectoryInformation, // FILE_ID_64_EXTD_DIR_INFORMATION
FileId64ExtdBothDirectoryInformation, // FILE_ID_64_EXTD_BOTH_DIR_INFORMATION
FileIdAllExtdDirectoryInformation, // FILE_ID_ALL_EXTD_DIR_INFORMATION
FileIdAllExtdBothDirectoryInformation, // FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION
FileStreamReservationInformation, // FILE_STREAM_RESERVATION_INFORMATION // since 24H2
FileMupProviderInfo, // MUP_PROVIDER_INFORMATION
FileMaximumInformation
FileDirectoryInformation = 1,
// q: FILE_DIRECTORY_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileFullDirectoryInformation,
// q: FILE_FULL_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileBothDirectoryInformation,
// q: FILE_BOTH_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileBasicInformation,
// q; s: FILE_BASIC_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FileStandardInformation, // q: FILE_STANDARD_INFORMATION, FILE_STANDARD_INFORMATION_EX
FileInternalInformation, // q: FILE_INTERNAL_INFORMATION
FileEaInformation, // q: FILE_EA_INFORMATION
FileAccessInformation, // q: FILE_ACCESS_INFORMATION
FileNameInformation, // q: FILE_NAME_INFORMATION
FileRenameInformation, // s: FILE_RENAME_INFORMATION (requires DELETE) // 10
FileLinkInformation, // s: FILE_LINK_INFORMATION
FileNamesInformation, // q: FILE_NAMES_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileDispositionInformation, // s: FILE_DISPOSITION_INFORMATION (requires DELETE)
FilePositionInformation, // q; s: FILE_POSITION_INFORMATION
FileFullEaInformation, // FILE_FULL_EA_INFORMATION
FileModeInformation, // q; s: FILE_MODE_INFORMATION
FileAlignmentInformation, // q: FILE_ALIGNMENT_INFORMATION
FileAllInformation, // q: FILE_ALL_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileAllocationInformation, // s: FILE_ALLOCATION_INFORMATION (requires FILE_WRITE_DATA)
FileEndOfFileInformation, // s: FILE_END_OF_FILE_INFORMATION (requires FILE_WRITE_DATA) // 20
FileAlternateNameInformation, // q: FILE_NAME_INFORMATION
FileStreamInformation, // q: FILE_STREAM_INFORMATION
FilePipeInformation,
// q; s: FILE_PIPE_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FilePipeLocalInformation, // q: FILE_PIPE_LOCAL_INFORMATION (requires FILE_READ_ATTRIBUTES)
FilePipeRemoteInformation,
// q; s: FILE_PIPE_REMOTE_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FileMailslotQueryInformation, // q: FILE_MAILSLOT_QUERY_INFORMATION
FileMailslotSetInformation, // s: FILE_MAILSLOT_SET_INFORMATION
FileCompressionInformation, // q: FILE_COMPRESSION_INFORMATION
FileObjectIdInformation, // q: FILE_OBJECTID_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileCompletionInformation, // s: FILE_COMPLETION_INFORMATION // 30
FileMoveClusterInformation, // s: FILE_MOVE_CLUSTER_INFORMATION (requires FILE_WRITE_DATA)
FileQuotaInformation, // q: FILE_QUOTA_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileReparsePointInformation,
// q: FILE_REPARSE_POINT_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileNetworkOpenInformation, // q: FILE_NETWORK_OPEN_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileAttributeTagInformation, // q: FILE_ATTRIBUTE_TAG_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileTrackingInformation, // s: FILE_TRACKING_INFORMATION (requires FILE_WRITE_DATA)
FileIdBothDirectoryInformation,
// q: FILE_ID_BOTH_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileIdFullDirectoryInformation,
// q: FILE_ID_FULL_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex])
FileValidDataLengthInformation,
// s: FILE_VALID_DATA_LENGTH_INFORMATION (requires FILE_WRITE_DATA and/or SeManageVolumePrivilege)
FileShortNameInformation, // s: FILE_NAME_INFORMATION (requires DELETE) // 40
FileIoCompletionNotificationInformation,
// q; s: FILE_IO_COMPLETION_NOTIFICATION_INFORMATION (q: requires FILE_READ_ATTRIBUTES) // since VISTA
FileIoStatusBlockRangeInformation, // s: FILE_IOSTATUSBLOCK_RANGE_INFORMATION (requires SeLockMemoryPrivilege)
FileIoPriorityHintInformation,
// q; s: FILE_IO_PRIORITY_HINT_INFORMATION, FILE_IO_PRIORITY_HINT_INFORMATION_EX (q: requires FILE_READ_DATA)
FileSfioReserveInformation, // q; s: FILE_SFIO_RESERVE_INFORMATION (q: requires FILE_READ_DATA)
FileSfioVolumeInformation, // q: FILE_SFIO_VOLUME_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileHardLinkInformation, // q: FILE_LINKS_INFORMATION
FileProcessIdsUsingFileInformation, // q: FILE_PROCESS_IDS_USING_FILE_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileNormalizedNameInformation, // q: FILE_NAME_INFORMATION
FileNetworkPhysicalNameInformation, // q: FILE_NETWORK_PHYSICAL_NAME_INFORMATION
FileIdGlobalTxDirectoryInformation,
// q: FILE_ID_GLOBAL_TX_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex]) // since WIN7 //
// 50
FileIsRemoteDeviceInformation, // q: FILE_IS_REMOTE_DEVICE_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileUnusedInformation,
FileNumaNodeInformation, // q: FILE_NUMA_NODE_INFORMATION
FileStandardLinkInformation, // q: FILE_STANDARD_LINK_INFORMATION
FileRemoteProtocolInformation, // q: FILE_REMOTE_PROTOCOL_INFORMATION
FileRenameInformationBypassAccessCheck, // (kernel-mode only); s: FILE_RENAME_INFORMATION // since WIN8
FileLinkInformationBypassAccessCheck, // (kernel-mode only); s: FILE_LINK_INFORMATION
FileVolumeNameInformation, // q: FILE_VOLUME_NAME_INFORMATION
FileIdInformation, // q: FILE_ID_INFORMATION
FileIdExtdDirectoryInformation,
// q: FILE_ID_EXTD_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex]) // 60
FileReplaceCompletionInformation, // s: FILE_COMPLETION_INFORMATION // since WINBLUE
FileHardLinkFullIdInformation, // q: FILE_LINK_ENTRY_FULL_ID_INFORMATION // FILE_LINKS_FULL_ID_INFORMATION
FileIdExtdBothDirectoryInformation,
// q: FILE_ID_EXTD_BOTH_DIR_INFORMATION (requires FILE_LIST_DIRECTORY) (NtQueryDirectoryFile[Ex]) // since THRESHOLD
FileDispositionInformationEx, // s: FILE_DISPOSITION_INFO_EX (requires DELETE) // since REDSTONE
FileRenameInformationEx, // s: FILE_RENAME_INFORMATION_EX
FileRenameInformationExBypassAccessCheck, // (kernel-mode only); s: FILE_RENAME_INFORMATION_EX
FileDesiredStorageClassInformation,
// q; s: FILE_DESIRED_STORAGE_CLASS_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires
// FILE_WRITE_ATTRIBUTES) // since REDSTONE2
FileStatInformation, // q: FILE_STAT_INFORMATION (requires FILE_READ_ATTRIBUTES)
FileMemoryPartitionInformation, // s: FILE_MEMORY_PARTITION_INFORMATION // since REDSTONE3
FileStatLxInformation,
// q: FILE_STAT_LX_INFORMATION (requires FILE_READ_ATTRIBUTES and FILE_READ_EA) // since REDSTONE4 // 70
FileCaseSensitiveInformation,
// q; s: FILE_CASE_SENSITIVE_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FileLinkInformationEx, // s: FILE_LINK_INFORMATION_EX // since REDSTONE5
FileLinkInformationExBypassAccessCheck, // (kernel-mode only); s: FILE_LINK_INFORMATION_EX
FileStorageReserveIdInformation,
// q; s: FILE_STORAGE_RESERVE_ID_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES)
FileCaseSensitiveInformationForceAccessCheck, // q; s: FILE_CASE_SENSITIVE_INFORMATION
FileKnownFolderInformation,
// q; s: FILE_KNOWN_FOLDER_INFORMATION (q: requires FILE_READ_ATTRIBUTES; s: requires FILE_WRITE_ATTRIBUTES) //
// since WIN11
FileStatBasicInformation, // since 23H2
FileId64ExtdDirectoryInformation, // FILE_ID_64_EXTD_DIR_INFORMATION
FileId64ExtdBothDirectoryInformation, // FILE_ID_64_EXTD_BOTH_DIR_INFORMATION
FileIdAllExtdDirectoryInformation, // FILE_ID_ALL_EXTD_DIR_INFORMATION
FileIdAllExtdBothDirectoryInformation, // FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION
FileStreamReservationInformation, // FILE_STREAM_RESERVATION_INFORMATION // since 24H2
FileMupProviderInfo, // MUP_PROVIDER_INFORMATION
FileMaximumInformation
} FILE_INFORMATION_CLASS, *PFILE_INFORMATION_CLASS;
typedef enum _OBJECT_INFORMATION_CLASS
{
ObjectBasicInformation, // q: OBJECT_BASIC_INFORMATION
ObjectNameInformation, // q: OBJECT_NAME_INFORMATION
ObjectTypeInformation, // q: OBJECT_TYPE_INFORMATION
ObjectTypesInformation, // q: OBJECT_TYPES_INFORMATION
ObjectHandleFlagInformation, // qs: OBJECT_HANDLE_FLAG_INFORMATION
ObjectSessionInformation, // s: void // change object session // (requires SeTcbPrivilege)
ObjectSessionObjectInformation, // s: void // change object session // (requires SeTcbPrivilege)
MaxObjectInfoClass
ObjectBasicInformation, // q: OBJECT_BASIC_INFORMATION
ObjectNameInformation, // q: OBJECT_NAME_INFORMATION
ObjectTypeInformation, // q: OBJECT_TYPE_INFORMATION
ObjectTypesInformation, // q: OBJECT_TYPES_INFORMATION
ObjectHandleFlagInformation, // qs: OBJECT_HANDLE_FLAG_INFORMATION
ObjectSessionInformation, // s: void // change object session // (requires SeTcbPrivilege)
ObjectSessionObjectInformation, // s: void // change object session // (requires SeTcbPrivilege)
MaxObjectInfoClass
} OBJECT_INFORMATION_CLASS;
typedef enum _HARDERROR_RESPONSE_OPTION
{
OptionAbortRetryIgnore,
OptionOk,
OptionOkCancel,
OptionRetryCancel,
OptionYesNo,
OptionYesNoCancel,
OptionShutdownSystem,
OptionOkNoWait,
OptionCancelTryContinue
OptionAbortRetryIgnore,
OptionOk,
OptionOkCancel,
OptionRetryCancel,
OptionYesNo,
OptionYesNoCancel,
OptionShutdownSystem,
OptionOkNoWait,
OptionCancelTryContinue
} HARDERROR_RESPONSE_OPTION;
typedef enum _HARDERROR_RESPONSE
{
ResponseReturnToCaller,
ResponseNotHandled,
ResponseAbort,
ResponseCancel,
ResponseIgnore,
ResponseNo,
ResponseOk,
ResponseRetry,
ResponseYes,
ResponseTryAgain,
ResponseContinue
ResponseReturnToCaller,
ResponseNotHandled,
ResponseAbort,
ResponseCancel,
ResponseIgnore,
ResponseNo,
ResponseOk,
ResponseRetry,
ResponseYes,
ResponseTryAgain,
ResponseContinue
} HARDERROR_RESPONSE;
typedef USHORT RTL_ATOM;
@@ -248,113 +252,112 @@ typedef USHORT RTL_ATOM;
template <typename Traits>
struct IO_STATUS_BLOCK
{
union
{
NTSTATUS Status;
typename Traits::PVOID Pointer;
};
union
{
NTSTATUS Status;
typename Traits::PVOID Pointer;
};
typename Traits::ULONG_PTR Information;
typename Traits::ULONG_PTR Information;
};
template <typename Traits>
struct OBJECT_ATTRIBUTES
{
ULONG Length;
typename Traits::HANDLE RootDirectory;
EMULATOR_CAST(typename Traits::PVOID, UNICODE_STRING*) ObjectName;
ULONG Attributes;
typename Traits::PVOID SecurityDescriptor; // PSECURITY_DESCRIPTOR;
typename Traits::PVOID SecurityQualityOfService; // PSECURITY_QUALITY_OF_SERVICE
ULONG Length;
typename Traits::HANDLE RootDirectory;
EMULATOR_CAST(typename Traits::PVOID, UNICODE_STRING*) ObjectName;
ULONG Attributes;
typename Traits::PVOID SecurityDescriptor; // PSECURITY_DESCRIPTOR;
typename Traits::PVOID SecurityQualityOfService; // PSECURITY_QUALITY_OF_SERVICE
};
typedef struct _FILE_FS_DEVICE_INFORMATION
{
DEVICE_TYPE DeviceType;
ULONG Characteristics;
DEVICE_TYPE DeviceType;
ULONG Characteristics;
} FILE_FS_DEVICE_INFORMATION, *PFILE_FS_DEVICE_INFORMATION;
typedef struct _FILE_POSITION_INFORMATION
{
LARGE_INTEGER CurrentByteOffset;
LARGE_INTEGER CurrentByteOffset;
} FILE_POSITION_INFORMATION, *PFILE_POSITION_INFORMATION;
typedef struct _FILE_STANDARD_INFORMATION
{
LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
ULONG NumberOfLinks;
BOOLEAN DeletePending;
BOOLEAN Directory;
LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
ULONG NumberOfLinks;
BOOLEAN DeletePending;
BOOLEAN Directory;
} FILE_STANDARD_INFORMATION, *PFILE_STANDARD_INFORMATION;
typedef struct _FILE_NAME_INFORMATION
{
ULONG FileNameLength;
char16_t FileName[1];
ULONG FileNameLength;
char16_t FileName[1];
} FILE_NAME_INFORMATION, *PFILE_NAME_INFORMATION;
typedef struct _FILE_BASIC_INFORMATION
{
LARGE_INTEGER CreationTime; // Specifies the time that the file was created.
LARGE_INTEGER LastAccessTime; // Specifies the time that the file was last accessed.
LARGE_INTEGER LastWriteTime; // Specifies the time that the file was last written to.
LARGE_INTEGER ChangeTime; // Specifies the last time the file was changed.
ULONG FileAttributes; // Specifies one or more FILE_ATTRIBUTE_XXX flags.
LARGE_INTEGER CreationTime; // Specifies the time that the file was created.
LARGE_INTEGER LastAccessTime; // Specifies the time that the file was last accessed.
LARGE_INTEGER LastWriteTime; // Specifies the time that the file was last written to.
LARGE_INTEGER ChangeTime; // Specifies the last time the file was changed.
ULONG FileAttributes; // Specifies one or more FILE_ATTRIBUTE_XXX flags.
} FILE_BASIC_INFORMATION, *PFILE_BASIC_INFORMATION;
typedef struct _FILE_DIRECTORY_INFORMATION
{
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
char16_t FileName[1];
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
char16_t FileName[1];
} FILE_DIRECTORY_INFORMATION, *PFILE_DIRECTORY_INFORMATION;
typedef struct _FILE_FULL_DIR_INFORMATION
{
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
char16_t FileName[1];
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
char16_t FileName[1];
} FILE_FULL_DIR_INFORMATION, *PFILE_FULL_DIR_INFORMATION;
typedef struct _FILE_BOTH_DIR_INFORMATION
{
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
char ShortNameLength;
char16_t ShortName[12];
char16_t FileName[1];
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
char ShortNameLength;
char16_t ShortName[12];
char16_t FileName[1];
} FILE_BOTH_DIR_INFORMATION, *PFILE_BOTH_DIR_INFORMATION;
#ifndef OS_WINDOWS
typedef BOOLEAN SECURITY_CONTEXT_TRACKING_MODE,
* PSECURITY_CONTEXT_TRACKING_MODE;
typedef BOOLEAN SECURITY_CONTEXT_TRACKING_MODE, *PSECURITY_CONTEXT_TRACKING_MODE;
typedef struct _SECURITY_QUALITY_OF_SERVICE
{
DWORD Length;
@@ -367,17 +370,17 @@ typedef struct _SECURITY_QUALITY_OF_SERVICE
typedef struct _PORT_VIEW64
{
ULONG Length;
EMULATOR_CAST(std::uint64_t, HANDLE) SectionHandle;
ULONG SectionOffset;
EMULATOR_CAST(std::int64_t, SIZE_T) ViewSize;
EmulatorTraits<Emu64>::PVOID ViewBase;
EmulatorTraits<Emu64>::PVOID ViewRemoteBase;
ULONG Length;
EMULATOR_CAST(std::uint64_t, HANDLE) SectionHandle;
ULONG SectionOffset;
EMULATOR_CAST(std::int64_t, SIZE_T) ViewSize;
EmulatorTraits<Emu64>::PVOID ViewBase;
EmulatorTraits<Emu64>::PVOID ViewRemoteBase;
} PORT_VIEW64, *PPORT_VIEW64;
typedef struct _REMOTE_PORT_VIEW64
{
ULONG Length;
EMULATOR_CAST(std::int64_t, SIZE_T) ViewSize;
EmulatorTraits<Emu64>::PVOID ViewBase;
ULONG Length;
EMULATOR_CAST(std::int64_t, SIZE_T) ViewSize;
EmulatorTraits<Emu64>::PVOID ViewBase;
} REMOTE_PORT_VIEW64, *PREMOTE_PORT_VIEW64;

File diff suppressed because it is too large Load Diff

View File

@@ -1,21 +1,21 @@
#pragma once
#define PAGE_EXECUTE 0x10
#define PAGE_EXECUTE_READ 0x20
#define PAGE_EXECUTE_READWRITE 0x40
#define PAGE_EXECUTE_WRITECOPY 0x80
#define PAGE_EXECUTE 0x10
#define PAGE_EXECUTE_READ 0x20
#define PAGE_EXECUTE_READWRITE 0x40
#define PAGE_EXECUTE_WRITECOPY 0x80
#define PAGE_NOACCESS 0x01
#define PAGE_READONLY 0x02
#define PAGE_READWRITE 0x04
#define PAGE_WRITECOPY 0x08
#define PAGE_NOACCESS 0x01
#define PAGE_READONLY 0x02
#define PAGE_READWRITE 0x04
#define PAGE_WRITECOPY 0x08
#define PAGE_TARGETS_INVALID 0x40000000
#define PAGE_TARGETS_NO_UPDATE 0x40000000
#define PAGE_TARGETS_INVALID 0x40000000
#define PAGE_TARGETS_NO_UPDATE 0x40000000
#define PAGE_GUARD 0x100
#define PAGE_NOCACHE 0x200
#define PAGE_WRITECOMBINE 0x400
#define PAGE_GUARD 0x100
#define PAGE_NOCACHE 0x200
#define PAGE_WRITECOMBINE 0x400
#define MEM_COMMIT 0x00001000
#define MEM_RESERVE 0x00002000
@@ -38,94 +38,92 @@
typedef enum _MEMORY_INFORMATION_CLASS
{
MemoryBasicInformation, // q: MEMORY_BASIC_INFORMATION
MemoryWorkingSetInformation, // q: MEMORY_WORKING_SET_INFORMATION
MemoryMappedFilenameInformation, // q: UNICODE_STRING
MemoryRegionInformation, // q: MEMORY_REGION_INFORMATION
MemoryWorkingSetExInformation, // q: MEMORY_WORKING_SET_EX_INFORMATION // since VISTA
MemorySharedCommitInformation, // q: MEMORY_SHARED_COMMIT_INFORMATION // since WIN8
MemoryImageInformation, // q: MEMORY_IMAGE_INFORMATION
MemoryRegionInformationEx, // MEMORY_REGION_INFORMATION
MemoryPrivilegedBasicInformation, // MEMORY_BASIC_INFORMATION
MemoryEnclaveImageInformation, // MEMORY_ENCLAVE_IMAGE_INFORMATION // since REDSTONE3
MemoryBasicInformationCapped, // 10
MemoryPhysicalContiguityInformation, // MEMORY_PHYSICAL_CONTIGUITY_INFORMATION // since 20H1
MemoryBadInformation, // since WIN11
MemoryBadInformationAllProcesses, // since 22H1
MemoryImageExtensionInformation, // since 24H2
MaxMemoryInfoClass
MemoryBasicInformation, // q: MEMORY_BASIC_INFORMATION
MemoryWorkingSetInformation, // q: MEMORY_WORKING_SET_INFORMATION
MemoryMappedFilenameInformation, // q: UNICODE_STRING
MemoryRegionInformation, // q: MEMORY_REGION_INFORMATION
MemoryWorkingSetExInformation, // q: MEMORY_WORKING_SET_EX_INFORMATION // since VISTA
MemorySharedCommitInformation, // q: MEMORY_SHARED_COMMIT_INFORMATION // since WIN8
MemoryImageInformation, // q: MEMORY_IMAGE_INFORMATION
MemoryRegionInformationEx, // MEMORY_REGION_INFORMATION
MemoryPrivilegedBasicInformation, // MEMORY_BASIC_INFORMATION
MemoryEnclaveImageInformation, // MEMORY_ENCLAVE_IMAGE_INFORMATION // since REDSTONE3
MemoryBasicInformationCapped, // 10
MemoryPhysicalContiguityInformation, // MEMORY_PHYSICAL_CONTIGUITY_INFORMATION // since 20H1
MemoryBadInformation, // since WIN11
MemoryBadInformationAllProcesses, // since 22H1
MemoryImageExtensionInformation, // since 24H2
MaxMemoryInfoClass
} MEMORY_INFORMATION_CLASS;
typedef enum _SECTION_INHERIT
{
ViewShare = 1,
ViewUnmap = 2
ViewShare = 1,
ViewUnmap = 2
} SECTION_INHERIT;
typedef struct DECLSPEC_ALIGN(16) _EMU_MEMORY_BASIC_INFORMATION64
{
void* BaseAddress;
void* AllocationBase;
DWORD AllocationProtect;
WORD PartitionId;
std::int64_t RegionSize;
DWORD State;
DWORD Protect;
DWORD Type;
void* BaseAddress;
void* AllocationBase;
DWORD AllocationProtect;
WORD PartitionId;
std::int64_t RegionSize;
DWORD State;
DWORD Protect;
DWORD Type;
} EMU_MEMORY_BASIC_INFORMATION64, *PEMU_MEMORY_BASIC_INFORMATION64;
typedef struct _MEMORY_IMAGE_INFORMATION64
{
void* ImageBase;
std::int64_t SizeOfImage;
void* ImageBase;
std::int64_t SizeOfImage;
union
{
ULONG ImageFlags;
union
{
ULONG ImageFlags;
struct
{
ULONG ImagePartialMap : 1;
ULONG ImageNotExecutable : 1;
ULONG ImageSigningLevel : 4; // REDSTONE3
ULONG ImageExtensionPresent : 1; // since 24H2
ULONG Reserved : 25;
};
};
struct
{
ULONG ImagePartialMap : 1;
ULONG ImageNotExecutable : 1;
ULONG ImageSigningLevel : 4; // REDSTONE3
ULONG ImageExtensionPresent : 1; // since 24H2
ULONG Reserved : 25;
};
};
} MEMORY_IMAGE_INFORMATION64, *PMEMORY_IMAGE_INFORMATION64;
typedef struct _MEMORY_REGION_INFORMATION
{
void* AllocationBase;
ULONG AllocationProtect;
void* AllocationBase;
ULONG AllocationProtect;
union
{
ULONG RegionType;
union
{
ULONG RegionType;
struct
{
ULONG Private : 1;
ULONG MappedDataFile : 1;
ULONG MappedImage : 1;
ULONG MappedPageFile : 1;
ULONG MappedPhysical : 1;
ULONG DirectMapped : 1;
ULONG SoftwareEnclave : 1; // REDSTONE3
ULONG PageSize64K : 1;
ULONG PlaceholderReservation : 1; // REDSTONE4
ULONG MappedAwe : 1; // 21H1
ULONG MappedWriteWatch : 1;
ULONG PageSizeLarge : 1;
ULONG PageSizeHuge : 1;
ULONG Reserved : 19;
};
};
struct
{
ULONG Private : 1;
ULONG MappedDataFile : 1;
ULONG MappedImage : 1;
ULONG MappedPageFile : 1;
ULONG MappedPhysical : 1;
ULONG DirectMapped : 1;
ULONG SoftwareEnclave : 1; // REDSTONE3
ULONG PageSize64K : 1;
ULONG PlaceholderReservation : 1; // REDSTONE4
ULONG MappedAwe : 1; // 21H1
ULONG MappedWriteWatch : 1;
ULONG PageSizeLarge : 1;
ULONG PageSizeHuge : 1;
ULONG Reserved : 19;
};
};
std::int64_t RegionSize;
std::int64_t CommitSize;
DWORD64 PartitionId; // 19H1
DWORD64 NodePreference; // 20H1
std::int64_t RegionSize;
std::int64_t CommitSize;
DWORD64 PartitionId; // 19H1
DWORD64 NodePreference; // 20H1
} MEMORY_REGION_INFORMATION64, *PMEMORY_REGION_INFORMATION64;

View File

@@ -3,6 +3,6 @@
template <typename Traits>
struct EMU_WSABUF
{
ULONG len;
EMULATOR_CAST(typename Traits::PVOID, CHAR*) buf;
ULONG len;
EMULATOR_CAST(typename Traits::PVOID, CHAR*) buf;
};

View File

@@ -2,8 +2,8 @@
#ifdef _WIN32
#pragma warning(push)
#pragma warning(disable: 4201) // nameless struct/union
#pragma warning(disable: 4702) // unreachable code
#pragma warning(disable : 4201) // nameless struct/union
#pragma warning(disable : 4702) // unreachable code
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
@@ -27,18 +27,12 @@
#ifdef OS_WINDOWS
#pragma comment(lib, "ntdll")
extern "C" {
NTSYSCALLAPI
NTSTATUS
NTAPI
NtQuerySystemInformationEx(
_In_ SYSTEM_INFORMATION_CLASS SystemInformationClass,
_In_reads_bytes_(InputBufferLength) PVOID InputBuffer,
_In_ ULONG InputBufferLength,
_Out_writes_bytes_opt_(SystemInformationLength) PVOID SystemInformation,
_In_ ULONG SystemInformationLength,
_Out_opt_ PULONG ReturnLength
);
extern "C"
{
NTSYSCALLAPI NTSTATUS NTAPI NtQuerySystemInformationEx(
_In_ SYSTEM_INFORMATION_CLASS SystemInformationClass, _In_reads_bytes_(InputBufferLength) PVOID InputBuffer,
_In_ ULONG InputBufferLength, _Out_writes_bytes_opt_(SystemInformationLength) PVOID SystemInformation,
_In_ ULONG SystemInformationLength, _Out_opt_ PULONG ReturnLength);
}
#pragma warning(pop)
#else

View File

@@ -20,31 +20,30 @@ using LONGLONG = std::int64_t;
typedef union _ULARGE_INTEGER
{
struct
{
DWORD LowPart;
DWORD HighPart;
};
struct
{
DWORD LowPart;
DWORD HighPart;
};
ULONGLONG QuadPart;
ULONGLONG QuadPart;
} ULARGE_INTEGER;
typedef union _LARGE_INTEGER
{
struct
{
DWORD LowPart;
LONG HighPart;
};
struct
{
DWORD LowPart;
LONG HighPart;
};
LONGLONG QuadPart;
LONGLONG QuadPart;
} LARGE_INTEGER;
using BYTE = std::uint8_t;
#define CHAR BYTE
#define CHAR BYTE
#endif
using WORD = std::uint16_t;
#define UCHAR unsigned char
@@ -53,7 +52,6 @@ using WORD = std::uint16_t;
using CSHORT = short;
using USHORT = WORD;
#define DUMMYSTRUCTNAME
#ifndef TRUE

File diff suppressed because it is too large Load Diff

View File

@@ -2,63 +2,63 @@
typedef enum _KEY_INFORMATION_CLASS
{
KeyBasicInformation, // KEY_BASIC_INFORMATION
KeyNodeInformation, // KEY_NODE_INFORMATION
KeyFullInformation, // KEY_FULL_INFORMATION
KeyNameInformation, // KEY_NAME_INFORMATION
KeyCachedInformation, // KEY_CACHED_INFORMATION
KeyFlagsInformation, // KEY_FLAGS_INFORMATION
KeyVirtualizationInformation, // KEY_VIRTUALIZATION_INFORMATION
KeyHandleTagsInformation, // KEY_HANDLE_TAGS_INFORMATION
KeyTrustInformation, // KEY_TRUST_INFORMATION
KeyLayerInformation, // KEY_LAYER_INFORMATION
MaxKeyInfoClass
KeyBasicInformation, // KEY_BASIC_INFORMATION
KeyNodeInformation, // KEY_NODE_INFORMATION
KeyFullInformation, // KEY_FULL_INFORMATION
KeyNameInformation, // KEY_NAME_INFORMATION
KeyCachedInformation, // KEY_CACHED_INFORMATION
KeyFlagsInformation, // KEY_FLAGS_INFORMATION
KeyVirtualizationInformation, // KEY_VIRTUALIZATION_INFORMATION
KeyHandleTagsInformation, // KEY_HANDLE_TAGS_INFORMATION
KeyTrustInformation, // KEY_TRUST_INFORMATION
KeyLayerInformation, // KEY_LAYER_INFORMATION
MaxKeyInfoClass
} KEY_INFORMATION_CLASS;
typedef enum _KEY_VALUE_INFORMATION_CLASS
{
KeyValueBasicInformation, // KEY_VALUE_BASIC_INFORMATION
KeyValueFullInformation, // KEY_VALUE_FULL_INFORMATION
KeyValuePartialInformation, // KEY_VALUE_PARTIAL_INFORMATION
KeyValueFullInformationAlign64,
KeyValuePartialInformationAlign64, // KEY_VALUE_PARTIAL_INFORMATION_ALIGN64
KeyValueLayerInformation, // KEY_VALUE_LAYER_INFORMATION
MaxKeyValueInfoClass
KeyValueBasicInformation, // KEY_VALUE_BASIC_INFORMATION
KeyValueFullInformation, // KEY_VALUE_FULL_INFORMATION
KeyValuePartialInformation, // KEY_VALUE_PARTIAL_INFORMATION
KeyValueFullInformationAlign64,
KeyValuePartialInformationAlign64, // KEY_VALUE_PARTIAL_INFORMATION_ALIGN64
KeyValueLayerInformation, // KEY_VALUE_LAYER_INFORMATION
MaxKeyValueInfoClass
} KEY_VALUE_INFORMATION_CLASS;
struct KEY_NAME_INFORMATION
{
std::uint32_t NameLength;
char16_t Name[1];
std::uint32_t NameLength;
char16_t Name[1];
};
struct KEY_HANDLE_TAGS_INFORMATION
{
ULONG HandleTags;
ULONG HandleTags;
};
struct KEY_VALUE_BASIC_INFORMATION
{
ULONG TitleIndex;
ULONG Type;
ULONG NameLength;
char16_t Name[1];
ULONG TitleIndex;
ULONG Type;
ULONG NameLength;
char16_t Name[1];
};
struct KEY_VALUE_PARTIAL_INFORMATION
{
ULONG TitleIndex;
ULONG Type;
ULONG DataLength;
UCHAR Data[1];
ULONG TitleIndex;
ULONG Type;
ULONG DataLength;
UCHAR Data[1];
};
struct KEY_VALUE_FULL_INFORMATION
{
ULONG TitleIndex;
ULONG Type;
ULONG DataOffset;
ULONG DataLength;
ULONG NameLength;
char16_t Name[1];
ULONG TitleIndex;
ULONG Type;
ULONG DataOffset;
ULONG DataLength;
ULONG NameLength;
char16_t Name[1];
};

View File

@@ -5,42 +5,41 @@
using NTSTATUS = std::uint32_t;
#ifndef OS_WINDOWS
#define STATUS_WAIT_0 ((NTSTATUS)0x00000000L)
#define STATUS_TIMEOUT ((NTSTATUS)0x00000102L)
#define STATUS_WAIT_0 ((NTSTATUS)0x00000000L)
#define STATUS_TIMEOUT ((NTSTATUS)0x00000102L)
#define STATUS_ACCESS_VIOLATION ((NTSTATUS)0xC0000005L)
#define STATUS_INVALID_HANDLE ((NTSTATUS)0xC0000008L)
#define STATUS_INVALID_PARAMETER ((NTSTATUS)0xC000000DL)
#define STATUS_ACCESS_VIOLATION ((NTSTATUS)0xC0000005L)
#define STATUS_INVALID_HANDLE ((NTSTATUS)0xC0000008L)
#define STATUS_INVALID_PARAMETER ((NTSTATUS)0xC000000DL)
#define STATUS_ILLEGAL_INSTRUCTION ((NTSTATUS)0xC000001DL)
#define STATUS_PENDING ((DWORD)0x00000103L)
#define STATUS_PENDING ((NTSTATUS)0x00000103L)
#endif
#define STATUS_SUCCESS ((NTSTATUS)0x00000000L)
#define STATUS_WAIT_1 ((NTSTATUS)0x00000001L)
#define STATUS_SUCCESS ((NTSTATUS)0x00000000L)
#define STATUS_WAIT_1 ((NTSTATUS)0x00000001L)
#define STATUS_UNSUCCESSFUL ((NTSTATUS)0x00000001L)
#define STATUS_ALERTED ((NTSTATUS)0x00000101L)
#define STATUS_UNSUCCESSFUL ((NTSTATUS)0x00000001L)
#define STATUS_ALERTED ((NTSTATUS)0x00000101L)
#define STATUS_OBJECT_NAME_EXISTS ((NTSTATUS)0x40000000L)
#define STATUS_OBJECT_NAME_EXISTS ((NTSTATUS)0x40000000L)
#define STATUS_NO_MORE_FILES ((NTSTATUS)0x80000006L)
#define STATUS_NO_MORE_FILES ((NTSTATUS)0x80000006L)
#define STATUS_ILLEGAL_INSTRUCTION ((DWORD )0xC000001DL)
#define STATUS_ACCESS_DENIED ((NTSTATUS)0xC0000022L)
#define STATUS_BUFFER_TOO_SMALL ((NTSTATUS)0xC0000023L)
#define STATUS_OBJECT_NAME_NOT_FOUND ((NTSTATUS)0xC0000034L)
#define STATUS_NO_TOKEN ((NTSTATUS)0xC000007CL)
#define STATUS_FILE_INVALID ((NTSTATUS)0xC0000098L)
#define STATUS_MEMORY_NOT_ALLOCATED ((NTSTATUS)0xC00000A0L)
#define STATUS_FILE_IS_A_DIRECTORY ((NTSTATUS)0xC00000BAL)
#define STATUS_NOT_SUPPORTED ((NTSTATUS)0xC00000BBL)
#define STATUS_INVALID_ADDRESS ((NTSTATUS)0xC0000141L)
#define STATUS_NOT_FOUND ((NTSTATUS)0xC0000225L)
#define STATUS_CONNECTION_REFUSED ((NTSTATUS)0xC0000236L)
#define STATUS_ADDRESS_ALREADY_ASSOCIATED ((NTSTATUS)0xC0000328L)
#define STATUS_ACCESS_DENIED ((NTSTATUS)0xC0000022L)
#define STATUS_BUFFER_TOO_SMALL ((NTSTATUS)0xC0000023L)
#define STATUS_OBJECT_NAME_NOT_FOUND ((NTSTATUS)0xC0000034L)
#define STATUS_NO_TOKEN ((NTSTATUS)0xC000007CL)
#define STATUS_FILE_INVALID ((NTSTATUS)0xC0000098L)
#define STATUS_MEMORY_NOT_ALLOCATED ((NTSTATUS)0xC00000A0L)
#define STATUS_FILE_IS_A_DIRECTORY ((NTSTATUS)0xC00000BAL)
#define STATUS_NOT_SUPPORTED ((NTSTATUS)0xC00000BBL)
#define STATUS_INVALID_ADDRESS ((NTSTATUS)0xC0000141L)
#define STATUS_NOT_FOUND ((NTSTATUS)0xC0000225L)
#define STATUS_CONNECTION_REFUSED ((NTSTATUS)0xC0000236L)
#define STATUS_ADDRESS_ALREADY_ASSOCIATED ((NTSTATUS)0xC0000328L)
#define STATUS_BUFFER_OVERFLOW ((NTSTATUS)0x80000005L)
#define STATUS_BUFFER_OVERFLOW ((NTSTATUS)0x80000005L)
#define FILE_DEVICE_NETWORK 0x00000012
#define FSCTL_AFD_BASE FILE_DEVICE_NETWORK
#define FILE_DEVICE_NETWORK 0x00000012
#define FSCTL_AFD_BASE FILE_DEVICE_NETWORK

View File

@@ -2,15 +2,15 @@
typedef enum _EVENT_TYPE
{
NotificationEvent,
SynchronizationEvent
NotificationEvent,
SynchronizationEvent
} EVENT_TYPE;
typedef enum _WAIT_TYPE
{
WaitAll,
WaitAny,
WaitNotification,
WaitDequeue,
WaitDpc,
WaitAll,
WaitAny,
WaitNotification,
WaitDequeue,
WaitDpc,
} WAIT_TYPE;

View File

@@ -2,70 +2,69 @@
typedef enum _THREADINFOCLASS
{
ThreadBasicInformation, // q: THREAD_BASIC_INFORMATION
ThreadTimes, // q: KERNEL_USER_TIMES
ThreadPriority, // s: KPRIORITY (requires SeIncreaseBasePriorityPrivilege)
ThreadBasePriority, // s: KPRIORITY
ThreadAffinityMask, // s: KAFFINITY
ThreadImpersonationToken, // s: HANDLE
ThreadDescriptorTableEntry, // q: DESCRIPTOR_TABLE_ENTRY (or WOW64_DESCRIPTOR_TABLE_ENTRY)
ThreadBasicInformation, // q: THREAD_BASIC_INFORMATION
ThreadTimes, // q: KERNEL_USER_TIMES
ThreadPriority, // s: KPRIORITY (requires SeIncreaseBasePriorityPrivilege)
ThreadBasePriority, // s: KPRIORITY
ThreadAffinityMask, // s: KAFFINITY
ThreadImpersonationToken, // s: HANDLE
ThreadDescriptorTableEntry, // q: DESCRIPTOR_TABLE_ENTRY (or WOW64_DESCRIPTOR_TABLE_ENTRY)
ThreadEnableAlignmentFaultFixup, // s: BOOLEAN
ThreadEventPair,
ThreadQuerySetWin32StartAddress, // q: ULONG_PTR
ThreadZeroTlsCell, // s: ULONG // TlsIndex // 10
ThreadPerformanceCount, // q: LARGE_INTEGER
ThreadAmILastThread, // q: ULONG
ThreadIdealProcessor, // s: ULONG
ThreadPriorityBoost, // qs: ULONG
ThreadSetTlsArrayAddress, // s: ULONG_PTR // Obsolete
ThreadIsIoPending, // q: ULONG
ThreadHideFromDebugger, // q: BOOLEAN; s: void
ThreadBreakOnTermination, // qs: ULONG
ThreadSwitchLegacyState, // s: void // NtCurrentThread // NPX/FPU
ThreadIsTerminated, // q: ULONG // 20
ThreadLastSystemCall, // q: THREAD_LAST_SYSCALL_INFORMATION
ThreadIoPriority, // qs: IO_PRIORITY_HINT (requires SeIncreaseBasePriorityPrivilege)
ThreadCycleTime, // q: THREAD_CYCLE_TIME_INFORMATION
ThreadPagePriority, // qs: PAGE_PRIORITY_INFORMATION
ThreadActualBasePriority, // s: LONG (requires SeIncreaseBasePriorityPrivilege)
ThreadTebInformation, // q: THREAD_TEB_INFORMATION (requires THREAD_GET_CONTEXT + THREAD_SET_CONTEXT)
ThreadCSwitchMon, // Obsolete
ThreadZeroTlsCell, // s: ULONG // TlsIndex // 10
ThreadPerformanceCount, // q: LARGE_INTEGER
ThreadAmILastThread, // q: ULONG
ThreadIdealProcessor, // s: ULONG
ThreadPriorityBoost, // qs: ULONG
ThreadSetTlsArrayAddress, // s: ULONG_PTR // Obsolete
ThreadIsIoPending, // q: ULONG
ThreadHideFromDebugger, // q: BOOLEAN; s: void
ThreadBreakOnTermination, // qs: ULONG
ThreadSwitchLegacyState, // s: void // NtCurrentThread // NPX/FPU
ThreadIsTerminated, // q: ULONG // 20
ThreadLastSystemCall, // q: THREAD_LAST_SYSCALL_INFORMATION
ThreadIoPriority, // qs: IO_PRIORITY_HINT (requires SeIncreaseBasePriorityPrivilege)
ThreadCycleTime, // q: THREAD_CYCLE_TIME_INFORMATION
ThreadPagePriority, // qs: PAGE_PRIORITY_INFORMATION
ThreadActualBasePriority, // s: LONG (requires SeIncreaseBasePriorityPrivilege)
ThreadTebInformation, // q: THREAD_TEB_INFORMATION (requires THREAD_GET_CONTEXT + THREAD_SET_CONTEXT)
ThreadCSwitchMon, // Obsolete
ThreadCSwitchPmu,
ThreadWow64Context, // qs: WOW64_CONTEXT, ARM_NT_CONTEXT since 20H1
ThreadGroupInformation, // qs: GROUP_AFFINITY // 30
ThreadUmsInformation, // q: THREAD_UMS_INFORMATION // Obsolete
ThreadCounterProfiling, // q: BOOLEAN; s: THREAD_PROFILING_INFORMATION?
ThreadIdealProcessorEx, // qs: PROCESSOR_NUMBER; s: previous PROCESSOR_NUMBER on return
ThreadWow64Context, // qs: WOW64_CONTEXT, ARM_NT_CONTEXT since 20H1
ThreadGroupInformation, // qs: GROUP_AFFINITY // 30
ThreadUmsInformation, // q: THREAD_UMS_INFORMATION // Obsolete
ThreadCounterProfiling, // q: BOOLEAN; s: THREAD_PROFILING_INFORMATION?
ThreadIdealProcessorEx, // qs: PROCESSOR_NUMBER; s: previous PROCESSOR_NUMBER on return
ThreadCpuAccountingInformation, // q: BOOLEAN; s: HANDLE (NtOpenSession) // NtCurrentThread // since WIN8
ThreadSuspendCount, // q: ULONG // since WINBLUE
ThreadHeterogeneousCpuPolicy, // q: KHETERO_CPU_POLICY // since THRESHOLD
ThreadContainerId, // q: GUID
ThreadNameInformation, // qs: THREAD_NAME_INFORMATION
ThreadSuspendCount, // q: ULONG // since WINBLUE
ThreadHeterogeneousCpuPolicy, // q: KHETERO_CPU_POLICY // since THRESHOLD
ThreadContainerId, // q: GUID
ThreadNameInformation, // qs: THREAD_NAME_INFORMATION
ThreadSelectedCpuSets,
ThreadSystemThreadInformation, // q: SYSTEM_THREAD_INFORMATION // 40
ThreadActualGroupAffinity, // q: GROUP_AFFINITY // since THRESHOLD2
ThreadDynamicCodePolicyInfo, // q: ULONG; s: ULONG (NtCurrentThread)
ThreadExplicitCaseSensitivity, // qs: ULONG; s: 0 disables, otherwise enables
ThreadWorkOnBehalfTicket, // RTL_WORK_ON_BEHALF_TICKET_EX
ThreadSubsystemInformation, // q: SUBSYSTEM_INFORMATION_TYPE // since REDSTONE2
ThreadDbgkWerReportActive, // s: ULONG; s: 0 disables, otherwise enables
ThreadAttachContainer, // s: HANDLE (job object) // NtCurrentThread
ThreadSystemThreadInformation, // q: SYSTEM_THREAD_INFORMATION // 40
ThreadActualGroupAffinity, // q: GROUP_AFFINITY // since THRESHOLD2
ThreadDynamicCodePolicyInfo, // q: ULONG; s: ULONG (NtCurrentThread)
ThreadExplicitCaseSensitivity, // qs: ULONG; s: 0 disables, otherwise enables
ThreadWorkOnBehalfTicket, // RTL_WORK_ON_BEHALF_TICKET_EX
ThreadSubsystemInformation, // q: SUBSYSTEM_INFORMATION_TYPE // since REDSTONE2
ThreadDbgkWerReportActive, // s: ULONG; s: 0 disables, otherwise enables
ThreadAttachContainer, // s: HANDLE (job object) // NtCurrentThread
ThreadManageWritesToExecutableMemory, // MANAGE_WRITES_TO_EXECUTABLE_MEMORY // since REDSTONE3
ThreadPowerThrottlingState, // POWER_THROTTLING_THREAD_STATE // since REDSTONE3 (set), WIN11 22H2 (query)
ThreadWorkloadClass, // THREAD_WORKLOAD_CLASS // since REDSTONE5 // 50
ThreadCreateStateChange, // since WIN11
ThreadPowerThrottlingState, // POWER_THROTTLING_THREAD_STATE // since REDSTONE3 (set), WIN11 22H2 (query)
ThreadWorkloadClass, // THREAD_WORKLOAD_CLASS // since REDSTONE5 // 50
ThreadCreateStateChange, // since WIN11
ThreadApplyStateChange,
ThreadStrongerBadHandleChecks, // since 22H1
ThreadEffectiveIoPriority, // q: IO_PRIORITY_HINT
ThreadEffectivePagePriority, // q: ULONG
ThreadUpdateLockOwnership, // since 24H2
ThreadEffectiveIoPriority, // q: IO_PRIORITY_HINT
ThreadEffectivePagePriority, // q: ULONG
ThreadUpdateLockOwnership, // since 24H2
ThreadSchedulerSharedDataSlot, // SCHEDULER_SHARED_DATA_SLOT_INFORMATION
ThreadTebInformationAtomic, // THREAD_TEB_INFORMATION
ThreadIndexInformation, // THREAD_INDEX_INFORMATION
ThreadTebInformationAtomic, // THREAD_TEB_INFORMATION
ThreadIndexInformation, // THREAD_INDEX_INFORMATION
MaxThreadInfoClass
} THREADINFOCLASS;
template <typename Traits>
struct THREAD_NAME_INFORMATION
{

View File

@@ -19,19 +19,19 @@ struct EmulatorTraits;
template <>
struct EmulatorTraits<Emu32>
{
using PVOID = std::uint32_t;
using ULONG_PTR = std::uint32_t;
using SIZE_T = std::uint32_t;
using UNICODE = char16_t;
using HANDLE = std::uint32_t;
using PVOID = std::uint32_t;
using ULONG_PTR = std::uint32_t;
using SIZE_T = std::uint32_t;
using UNICODE = char16_t;
using HANDLE = std::uint32_t;
};
template <>
struct EmulatorTraits<Emu64>
{
using PVOID = std::uint64_t;
using ULONG_PTR = std::uint64_t;
using SIZE_T = std::uint64_t;
using UNICODE = char16_t;
using HANDLE = std::uint64_t;
using PVOID = std::uint64_t;
using ULONG_PTR = std::uint64_t;
using SIZE_T = std::uint64_t;
using UNICODE = char16_t;
using HANDLE = std::uint64_t;
};

View File

@@ -5,76 +5,76 @@
template <typename Traits>
struct UNICODE_STRING
{
USHORT Length;
USHORT MaximumLength;
EMULATOR_CAST(typename Traits::PVOID, char16_t*) Buffer;
USHORT Length;
USHORT MaximumLength;
EMULATOR_CAST(typename Traits::PVOID, char16_t*) Buffer;
};
inline std::string u16_to_u8(const std::u16string_view u16_view)
{
std::string utf8_str;
utf8_str.reserve(u16_view.size() * 2);
for (const char16_t ch : u16_view)
{
if (ch <= 0x7F)
{
utf8_str.push_back(static_cast<char>(ch));
}
else if (ch <= 0x7FF)
{
utf8_str.push_back(static_cast<char>(0xC0 | (ch >> 6)));
utf8_str.push_back(static_cast<char>(0x80 | (ch & 0x3F)));
}
else
{
utf8_str.push_back(static_cast<char>(0xE0 | (ch >> 12)));
utf8_str.push_back(static_cast<char>(0x80 | ((ch >> 6) & 0x3F)));
utf8_str.push_back(static_cast<char>(0x80 | (ch & 0x3F)));
}
}
return utf8_str;
std::string utf8_str;
utf8_str.reserve(u16_view.size() * 2);
for (const char16_t ch : u16_view)
{
if (ch <= 0x7F)
{
utf8_str.push_back(static_cast<char>(ch));
}
else if (ch <= 0x7FF)
{
utf8_str.push_back(static_cast<char>(0xC0 | (ch >> 6)));
utf8_str.push_back(static_cast<char>(0x80 | (ch & 0x3F)));
}
else
{
utf8_str.push_back(static_cast<char>(0xE0 | (ch >> 12)));
utf8_str.push_back(static_cast<char>(0x80 | ((ch >> 6) & 0x3F)));
utf8_str.push_back(static_cast<char>(0x80 | (ch & 0x3F)));
}
}
return utf8_str;
}
inline std::string w_to_u8(const std::wstring_view w_view)
{
std::string utf8_str;
utf8_str.reserve(w_view.size() * 2);
for (const wchar_t w_ch : w_view)
{
const auto ch = static_cast<char16_t>(w_ch);
if (ch <= 0x7F)
{
utf8_str.push_back(static_cast<char>(ch));
}
else if (ch <= 0x7FF)
{
utf8_str.push_back(static_cast<char>(0xC0 | (ch >> 6)));
utf8_str.push_back(static_cast<char>(0x80 | (ch & 0x3F)));
}
else
{
utf8_str.push_back(static_cast<char>(0xE0 | (ch >> 12)));
utf8_str.push_back(static_cast<char>(0x80 | ((ch >> 6) & 0x3F)));
utf8_str.push_back(static_cast<char>(0x80 | (ch & 0x3F)));
}
}
return utf8_str;
std::string utf8_str;
utf8_str.reserve(w_view.size() * 2);
for (const wchar_t w_ch : w_view)
{
const auto ch = static_cast<char16_t>(w_ch);
if (ch <= 0x7F)
{
utf8_str.push_back(static_cast<char>(ch));
}
else if (ch <= 0x7FF)
{
utf8_str.push_back(static_cast<char>(0xC0 | (ch >> 6)));
utf8_str.push_back(static_cast<char>(0x80 | (ch & 0x3F)));
}
else
{
utf8_str.push_back(static_cast<char>(0xE0 | (ch >> 12)));
utf8_str.push_back(static_cast<char>(0x80 | ((ch >> 6) & 0x3F)));
utf8_str.push_back(static_cast<char>(0x80 | (ch & 0x3F)));
}
}
return utf8_str;
}
#ifndef OS_WINDOWS
inline int open_unicode(FILE** handle, const std::u16string& fileName, const std::u16string& mode)
{
*handle = fopen(u16_to_u8(fileName).c_str(), u16_to_u8(mode).c_str());
return errno;
*handle = fopen(u16_to_u8(fileName).c_str(), u16_to_u8(mode).c_str());
return errno;
}
#else
inline std::wstring u16_to_w(const std::u16string& u16str)
{
return std::wstring(reinterpret_cast<const wchar_t*>(u16str.data()), u16str.size());
return std::wstring(reinterpret_cast<const wchar_t*>(u16str.data()), u16str.size());
}
inline auto open_unicode(FILE** handle, const std::u16string& fileName, const std::u16string& mode)
{
return _wfopen_s(handle, u16_to_w(fileName).c_str(), u16_to_w(mode).c_str());
return _wfopen_s(handle, u16_to_w(fileName).c_str(), u16_to_w(mode).c_str());
}
#endif

View File

@@ -2,96 +2,95 @@
#include <cstdint>
#define IMAGE_DIRECTORY_ENTRY_EXPORT 0 // Export Directory
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1 // Import Directory
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2 // Resource Directory
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3 // Exception Directory
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4 // Security Directory
#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5 // Base Relocation Table
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6 // Debug Directory
#define IMAGE_DIRECTORY_ENTRY_EXPORT 0 // Export Directory
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1 // Import Directory
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2 // Resource Directory
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3 // Exception Directory
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4 // Security Directory
#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5 // Base Relocation Table
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6 // Debug Directory
// IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7 // (X86 usage)
#define IMAGE_DIRECTORY_ENTRY_ARCHITECTURE 7 // Architecture Specific Data
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8 // RVA of GP
#define IMAGE_DIRECTORY_ENTRY_TLS 9 // TLS Directory
#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10 // Load Configuration Directory
#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 11 // Bound Import Directory in headers
#define IMAGE_DIRECTORY_ENTRY_IAT 12 // Import Address Table
#define IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT 13 // Delay Load Import Descriptors
#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 14 // COM Runtime descriptor
#define IMAGE_DIRECTORY_ENTRY_ARCHITECTURE 7 // Architecture Specific Data
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8 // RVA of GP
#define IMAGE_DIRECTORY_ENTRY_TLS 9 // TLS Directory
#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10 // Load Configuration Directory
#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 11 // Bound Import Directory in headers
#define IMAGE_DIRECTORY_ENTRY_IAT 12 // Import Address Table
#define IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT 13 // Delay Load Import Descriptors
#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 14 // COM Runtime descriptor
#define IMAGE_SCN_LNK_NRELOC_OVFL 0x01000000 // Section contains extended relocations.
#define IMAGE_SCN_MEM_DISCARDABLE 0x02000000 // Section can be discarded.
#define IMAGE_SCN_MEM_NOT_CACHED 0x04000000 // Section is not cachable.
#define IMAGE_SCN_MEM_NOT_PAGED 0x08000000 // Section is not pageable.
#define IMAGE_SCN_MEM_SHARED 0x10000000 // Section is shareable.
#define IMAGE_SCN_MEM_EXECUTE 0x20000000 // Section is executable.
#define IMAGE_SCN_MEM_READ 0x40000000 // Section is readable.
#define IMAGE_SCN_MEM_WRITE 0x80000000 // Section is writeable.
#define IMAGE_SCN_LNK_NRELOC_OVFL 0x01000000 // Section contains extended relocations.
#define IMAGE_SCN_MEM_DISCARDABLE 0x02000000 // Section can be discarded.
#define IMAGE_SCN_MEM_NOT_CACHED 0x04000000 // Section is not cachable.
#define IMAGE_SCN_MEM_NOT_PAGED 0x08000000 // Section is not pageable.
#define IMAGE_SCN_MEM_SHARED 0x10000000 // Section is shareable.
#define IMAGE_SCN_MEM_EXECUTE 0x20000000 // Section is executable.
#define IMAGE_SCN_MEM_READ 0x40000000 // Section is readable.
#define IMAGE_SCN_MEM_WRITE 0x80000000 // Section is writeable.
#define IMAGE_SCN_CNT_CODE 0x00000020 // Section contains code.
#define IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 // Section contains initialized data.
#define IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 // Section contains uninitialized data.
#define IMAGE_SCN_CNT_CODE 0x00000020 // Section contains code.
#define IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 // Section contains initialized data.
#define IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 // Section contains uninitialized data.
#define IMAGE_REL_BASED_ABSOLUTE 0
#define IMAGE_REL_BASED_HIGH 1
#define IMAGE_REL_BASED_LOW 2
#define IMAGE_REL_BASED_HIGHLOW 3
#define IMAGE_REL_BASED_HIGHADJ 4
#define IMAGE_REL_BASED_MIPS_JMPADDR 5
#define IMAGE_REL_BASED_ARM_MOV32A 5
#define IMAGE_REL_BASED_ARM_MOV32 5
#define IMAGE_REL_BASED_SECTION 6
#define IMAGE_REL_BASED_REL 7
#define IMAGE_REL_BASED_ARM_MOV32T 7
#define IMAGE_REL_BASED_THUMB_MOV32 7
#define IMAGE_REL_BASED_MIPS_JMPADDR16 9
#define IMAGE_REL_BASED_IA64_IMM64 9
#define IMAGE_REL_BASED_DIR64 10
#define IMAGE_REL_BASED_HIGH3ADJ 11
#define IMAGE_REL_BASED_ABSOLUTE 0
#define IMAGE_REL_BASED_HIGH 1
#define IMAGE_REL_BASED_LOW 2
#define IMAGE_REL_BASED_HIGHLOW 3
#define IMAGE_REL_BASED_HIGHADJ 4
#define IMAGE_REL_BASED_MIPS_JMPADDR 5
#define IMAGE_REL_BASED_ARM_MOV32A 5
#define IMAGE_REL_BASED_ARM_MOV32 5
#define IMAGE_REL_BASED_SECTION 6
#define IMAGE_REL_BASED_REL 7
#define IMAGE_REL_BASED_ARM_MOV32T 7
#define IMAGE_REL_BASED_THUMB_MOV32 7
#define IMAGE_REL_BASED_MIPS_JMPADDR16 9
#define IMAGE_REL_BASED_IA64_IMM64 9
#define IMAGE_REL_BASED_DIR64 10
#define IMAGE_REL_BASED_HIGH3ADJ 11
#define IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE 0x0040
#define IMAGE_FILE_DLL 0x2000
#define IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE 0x0040
#define IMAGE_FILE_DLL 0x2000
#define IMAGE_FILE_MACHINE_I386 0x014c
#define IMAGE_FILE_MACHINE_AMD64 0x8664
#define IMAGE_FILE_MACHINE_I386 0x014c
#define IMAGE_FILE_MACHINE_AMD64 0x8664
#define PROCESSOR_ARCHITECTURE_AMD64 9
#define PROCESSOR_ARCHITECTURE_AMD64 9
enum class PEMachineType : std::uint16_t
{
UNKNOWN = 0,
I386 = 0x014c, // Intel 386.
R3000 = 0x0162, // MIPS little-endian, 0x160 big-endian
R4000 = 0x0166, // MIPS little-endian
R10000 = 0x0168, // MIPS little-endian
WCEMIPSV2 = 0x0169, // MIPS little-endian WCE v2
ALPHA = 0x0184, // Alpha_AXP
SH3 = 0x01a2, // SH3 little-endian
SH3DSP = 0x01a3,
SH3E = 0x01a4, // SH3E little-endian
SH4 = 0x01a6, // SH4 little-endian
SH5 = 0x01a8, // SH5
ARM = 0x01c0, // ARM Little-Endian
THUMB = 0x01c2, // ARM Thumb/Thumb-2 Little-Endian
ARMNT = 0x01c4, // ARM Thumb-2 Little-Endian
AM33 = 0x01d3,
POWERPC = 0x01F0, // IBM PowerPC Little-Endian
POWERPCFP = 0x01f1,
IA64 = 0x0200, // Intel 64
MIPS16 = 0x0266, // MIPS
ALPHA64 = 0x0284, // ALPHA64
MIPSFPU = 0x0366, // MIPS
MIPSFPU16 = 0x0466, // MIPS
AXP64 = ALPHA64,
TRICORE = 0x0520, // Infineon
CEF = 0x0CEF,
EBC = 0x0EBC, // EFI Byte Code
AMD64 = 0x8664, // AMD64 (K8)
M32R = 0x9041, // M32R little-endian
CEE = 0xC0EE,
UNKNOWN = 0,
I386 = 0x014c, // Intel 386.
R3000 = 0x0162, // MIPS little-endian, 0x160 big-endian
R4000 = 0x0166, // MIPS little-endian
R10000 = 0x0168, // MIPS little-endian
WCEMIPSV2 = 0x0169, // MIPS little-endian WCE v2
ALPHA = 0x0184, // Alpha_AXP
SH3 = 0x01a2, // SH3 little-endian
SH3DSP = 0x01a3,
SH3E = 0x01a4, // SH3E little-endian
SH4 = 0x01a6, // SH4 little-endian
SH5 = 0x01a8, // SH5
ARM = 0x01c0, // ARM Little-Endian
THUMB = 0x01c2, // ARM Thumb/Thumb-2 Little-Endian
ARMNT = 0x01c4, // ARM Thumb-2 Little-Endian
AM33 = 0x01d3,
POWERPC = 0x01F0, // IBM PowerPC Little-Endian
POWERPCFP = 0x01f1,
IA64 = 0x0200, // Intel 64
MIPS16 = 0x0266, // MIPS
ALPHA64 = 0x0284, // ALPHA64
MIPSFPU = 0x0366, // MIPS
MIPSFPU16 = 0x0466, // MIPS
AXP64 = ALPHA64,
TRICORE = 0x0520, // Infineon
CEF = 0x0CEF,
EBC = 0x0EBC, // EFI Byte Code
AMD64 = 0x8664, // AMD64 (K8)
M32R = 0x9041, // M32R little-endian
CEE = 0xC0EE,
};
#pragma pack(push, 4)
template <typename T>
@@ -102,65 +101,64 @@ struct PEOptionalHeaderBasePart2_t
template <>
struct PEOptionalHeaderBasePart2_t<std::uint32_t>
{
std::uint32_t BaseOfData;
std::uint32_t ImageBase;
std::uint32_t BaseOfData;
std::uint32_t ImageBase;
};
template <>
struct PEOptionalHeaderBasePart2_t<std::uint64_t>
{
std::uint64_t ImageBase;
std::uint64_t ImageBase;
};
template <typename T>
struct PEOptionalHeaderBasePart1_t
{
enum
{
k_NumberOfDataDirectors = 16
};
enum
{
k_NumberOfDataDirectors = 16
};
uint16_t Magic;
uint8_t MajorLinkerVersion;
uint8_t MinorLinkerVersion;
uint32_t SizeOfCode;
uint32_t SizeOfInitializedData;
uint32_t SizeOfUninitializedData;
uint32_t AddressOfEntryPoint;
uint32_t BaseOfCode;
uint16_t Magic;
uint8_t MajorLinkerVersion;
uint8_t MinorLinkerVersion;
uint32_t SizeOfCode;
uint32_t SizeOfInitializedData;
uint32_t SizeOfUninitializedData;
uint32_t AddressOfEntryPoint;
uint32_t BaseOfCode;
};
struct PEDirectory_t2
{
std::uint32_t VirtualAddress;
std::uint32_t Size;
std::uint32_t VirtualAddress;
std::uint32_t Size;
};
template <typename T>
struct PEOptionalHeaderBasePart3_t : PEOptionalHeaderBasePart1_t<T>, PEOptionalHeaderBasePart2_t<T>
{
uint32_t SectionAlignment;
uint32_t FileAlignment;
uint16_t MajorOperatingSystemVersion;
uint16_t MinorOperatingSystemVersion;
uint16_t MajorImageVersion;
uint16_t MinorImageVersion;
uint16_t MajorSubsystemVersion;
uint16_t MinorSubsystemVersion;
uint32_t Win32VersionValue;
uint32_t SizeOfImage;
uint32_t SizeOfHeaders;
uint32_t CheckSum;
uint16_t Subsystem;
uint16_t DllCharacteristics;
T SizeOfStackReserve;
T SizeOfStackCommit;
T SizeOfHeapReserve;
T SizeOfHeapCommit;
uint32_t LoaderFlags;
uint32_t NumberOfRvaAndSizes;
PEDirectory_t2 DataDirectory[PEOptionalHeaderBasePart1_t<T>::k_NumberOfDataDirectors];
uint32_t SectionAlignment;
uint32_t FileAlignment;
uint16_t MajorOperatingSystemVersion;
uint16_t MinorOperatingSystemVersion;
uint16_t MajorImageVersion;
uint16_t MinorImageVersion;
uint16_t MajorSubsystemVersion;
uint16_t MinorSubsystemVersion;
uint32_t Win32VersionValue;
uint32_t SizeOfImage;
uint32_t SizeOfHeaders;
uint32_t CheckSum;
uint16_t Subsystem;
uint16_t DllCharacteristics;
T SizeOfStackReserve;
T SizeOfStackCommit;
T SizeOfHeapReserve;
T SizeOfHeapCommit;
uint32_t LoaderFlags;
uint32_t NumberOfRvaAndSizes;
PEDirectory_t2 DataDirectory[PEOptionalHeaderBasePart1_t<T>::k_NumberOfDataDirectors];
};
template <typename T>
@@ -171,113 +169,116 @@ struct PEOptionalHeader_t
template <>
struct PEOptionalHeader_t<std::uint32_t> : PEOptionalHeaderBasePart3_t<std::uint32_t>
{
enum
{
k_Magic = 0x10b, // IMAGE_NT_OPTIONAL_HDR32_MAGIC
};
enum
{
k_Magic = 0x10b, // IMAGE_NT_OPTIONAL_HDR32_MAGIC
};
};
template <>
struct PEOptionalHeader_t<std::uint64_t> : PEOptionalHeaderBasePart3_t<std::uint64_t>
{
enum
{
k_Magic = 0x20b, // IMAGE_NT_OPTIONAL_HDR64_MAGIC
};
enum
{
k_Magic = 0x20b, // IMAGE_NT_OPTIONAL_HDR64_MAGIC
};
};
struct PEFileHeader_t
{
PEMachineType Machine;
std::uint16_t NumberOfSections;
std::uint32_t TimeDateStamp;
std::uint32_t PointerToSymbolTable;
std::uint32_t NumberOfSymbols;
std::uint16_t SizeOfOptionalHeader;
std::uint16_t Characteristics;
PEMachineType Machine;
std::uint16_t NumberOfSections;
std::uint32_t TimeDateStamp;
std::uint32_t PointerToSymbolTable;
std::uint32_t NumberOfSymbols;
std::uint16_t SizeOfOptionalHeader;
std::uint16_t Characteristics;
};
template <typename T>
struct PENTHeaders_t
{
enum
{
k_Signature = 0x00004550, // IMAGE_NT_SIGNATURE
};
enum
{
k_Signature = 0x00004550, // IMAGE_NT_SIGNATURE
};
uint32_t Signature;
PEFileHeader_t FileHeader;
PEOptionalHeader_t<T> OptionalHeader;
uint32_t Signature;
PEFileHeader_t FileHeader;
PEOptionalHeader_t<T> OptionalHeader;
};
struct PEDosHeader_t
{
enum
{
k_Magic = 0x5A4D
};
enum
{
k_Magic = 0x5A4D
};
std::uint16_t e_magic; // Magic number ( k_Magic )
std::uint16_t e_cblp; // Bytes on last page of file
std::uint16_t e_cp; // Pages in file
std::uint16_t e_crlc; // Relocations
std::uint16_t e_cparhdr; // Size of header in paragraphs
std::uint16_t e_minalloc; // Minimum extra paragraphs needed
std::uint16_t e_maxalloc; // Maximum extra paragraphs needed
std::uint16_t e_ss; // Initial (relative) SS value
std::uint16_t e_sp; // Initial SP value
std::uint16_t e_csum; // Checksum
std::uint16_t e_ip; // Initial IP value
std::uint16_t e_cs; // Initial (relative) CS value
std::uint16_t e_lfarlc; // File address of relocation table
std::uint16_t e_ovno; // Overlay number
std::uint16_t e_res[4]; // Reserved words
std::uint16_t e_oemid; // OEM identifier (for e_oeminfo)
std::uint16_t e_oeminfo; // OEM information; e_oemid specific
std::uint16_t e_res2[10]; // Reserved words
std::uint32_t e_lfanew; // File address of new exe header
std::uint16_t e_magic; // Magic number ( k_Magic )
std::uint16_t e_cblp; // Bytes on last page of file
std::uint16_t e_cp; // Pages in file
std::uint16_t e_crlc; // Relocations
std::uint16_t e_cparhdr; // Size of header in paragraphs
std::uint16_t e_minalloc; // Minimum extra paragraphs needed
std::uint16_t e_maxalloc; // Maximum extra paragraphs needed
std::uint16_t e_ss; // Initial (relative) SS value
std::uint16_t e_sp; // Initial SP value
std::uint16_t e_csum; // Checksum
std::uint16_t e_ip; // Initial IP value
std::uint16_t e_cs; // Initial (relative) CS value
std::uint16_t e_lfarlc; // File address of relocation table
std::uint16_t e_ovno; // Overlay number
std::uint16_t e_res[4]; // Reserved words
std::uint16_t e_oemid; // OEM identifier (for e_oeminfo)
std::uint16_t e_oeminfo; // OEM information; e_oemid specific
std::uint16_t e_res2[10]; // Reserved words
std::uint32_t e_lfanew; // File address of new exe header
};
#pragma pack(pop)
#define IMAGE_SIZEOF_SHORT_NAME 8
#define IMAGE_SIZEOF_SHORT_NAME 8
#ifndef OS_WINDOWS
typedef struct _IMAGE_SECTION_HEADER
{
std::uint8_t Name[IMAGE_SIZEOF_SHORT_NAME];
union {
std:: uint32_t PhysicalAddress;
std::uint32_t VirtualSize;
std::uint8_t Name[IMAGE_SIZEOF_SHORT_NAME];
union
{
std::uint32_t PhysicalAddress;
std::uint32_t VirtualSize;
} Misc;
std::uint32_t VirtualAddress;
std::uint32_t SizeOfRawData;
std::uint32_t PointerToRawData;
std::uint32_t PointerToRelocations;
std::uint32_t PointerToLinenumbers;
std::uint16_t NumberOfRelocations;
std::uint16_t NumberOfLinenumbers;
std::uint32_t Characteristics;
std::uint32_t VirtualAddress;
std::uint32_t SizeOfRawData;
std::uint32_t PointerToRawData;
std::uint32_t PointerToRelocations;
std::uint32_t PointerToLinenumbers;
std::uint16_t NumberOfRelocations;
std::uint16_t NumberOfLinenumbers;
std::uint32_t Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;
typedef struct _IMAGE_EXPORT_DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
DWORD Name;
DWORD Base;
DWORD NumberOfFunctions;
DWORD NumberOfNames;
DWORD AddressOfFunctions;
DWORD AddressOfNames;
DWORD AddressOfNameOrdinals;
typedef struct _IMAGE_EXPORT_DIRECTORY
{
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
DWORD Name;
DWORD Base;
DWORD NumberOfFunctions;
DWORD NumberOfNames;
DWORD AddressOfFunctions;
DWORD AddressOfNames;
DWORD AddressOfNameOrdinals;
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;
typedef struct _IMAGE_BASE_RELOCATION {
DWORD VirtualAddress;
DWORD SizeOfBlock;
WORD TypeOffset[1];
typedef struct _IMAGE_BASE_RELOCATION
{
DWORD VirtualAddress;
DWORD SizeOfBlock;
WORD TypeOffset[1];
} IMAGE_BASE_RELOCATION, *PIMAGE_BASE_RELOCATION;
#endif
@@ -285,56 +286,56 @@ typedef struct _IMAGE_BASE_RELOCATION {
template <typename Traits>
struct SECTION_IMAGE_INFORMATION
{
typename Traits::PVOID TransferAddress;
ULONG ZeroBits;
typename Traits::SIZE_T MaximumStackSize;
typename Traits::SIZE_T CommittedStackSize;
ULONG SubSystemType;
typename Traits::PVOID TransferAddress;
ULONG ZeroBits;
typename Traits::SIZE_T MaximumStackSize;
typename Traits::SIZE_T CommittedStackSize;
ULONG SubSystemType;
union
{
struct
{
USHORT SubSystemMinorVersion;
USHORT SubSystemMajorVersion;
};
union
{
struct
{
USHORT SubSystemMinorVersion;
USHORT SubSystemMajorVersion;
};
ULONG SubSystemVersion;
};
ULONG SubSystemVersion;
};
union
{
struct
{
USHORT MajorOperatingSystemVersion;
USHORT MinorOperatingSystemVersion;
};
union
{
struct
{
USHORT MajorOperatingSystemVersion;
USHORT MinorOperatingSystemVersion;
};
ULONG OperatingSystemVersion;
};
ULONG OperatingSystemVersion;
};
USHORT ImageCharacteristics;
USHORT DllCharacteristics;
PEMachineType Machine;
BOOLEAN ImageContainsCode;
USHORT ImageCharacteristics;
USHORT DllCharacteristics;
PEMachineType Machine;
BOOLEAN ImageContainsCode;
union
{
UCHAR ImageFlags;
union
{
UCHAR ImageFlags;
struct
{
UCHAR ComPlusNativeReady : 1;
UCHAR ComPlusILOnly : 1;
UCHAR ImageDynamicallyRelocated : 1;
UCHAR ImageMappedFlat : 1;
UCHAR BaseBelow4gb : 1;
UCHAR ComPlusPrefer32bit : 1;
UCHAR Reserved : 2;
};
};
struct
{
UCHAR ComPlusNativeReady : 1;
UCHAR ComPlusILOnly : 1;
UCHAR ImageDynamicallyRelocated : 1;
UCHAR ImageMappedFlat : 1;
UCHAR BaseBelow4gb : 1;
UCHAR ComPlusPrefer32bit : 1;
UCHAR Reserved : 2;
};
};
ULONG LoaderFlags;
ULONG ImageFileSize;
ULONG CheckSum;
ULONG LoaderFlags;
ULONG ImageFileSize;
ULONG CheckSum;
};

View File

@@ -5,114 +5,114 @@
namespace utils
{
template <typename T, typename S = const uint8_t>
requires(std::is_trivially_copyable_v<T> && std::is_same_v<uint8_t, std::remove_cv_t<S>>)
class safe_object_accessor
{
public:
safe_object_accessor(const std::span<S> buffer, const size_t offset)
: buffer_(buffer)
, offset_(offset)
{
}
template <typename T, typename S = const uint8_t>
requires(std::is_trivially_copyable_v<T> && std::is_same_v<uint8_t, std::remove_cv_t<S>>)
class safe_object_accessor
{
public:
safe_object_accessor(const std::span<S> buffer, const size_t offset)
: buffer_(buffer),
offset_(offset)
{
}
/*****************************************************************************
* Object is copied to make sure platform-dependent alignment requirements
* are respected
****************************************************************************/
/*****************************************************************************
* Object is copied to make sure platform-dependent alignment requirements
* are respected
****************************************************************************/
T get(const size_t element_index = 0) const
{
T value{};
memcpy(&value, get_valid_pointer(element_index), size);
return value;
}
T get(const size_t element_index = 0) const
{
T value{};
memcpy(&value, get_valid_pointer(element_index), size);
return value;
}
void set(const T value, const size_t element_index = 0) const
{
memcpy(get_valid_pointer(element_index), &value, size);
}
void set(const T value, const size_t element_index = 0) const
{
memcpy(get_valid_pointer(element_index), &value, size);
}
private:
static constexpr auto size = sizeof(T);
private:
static constexpr auto size = sizeof(T);
std::span<S> buffer_{};
size_t offset_{};
std::span<S> buffer_{};
size_t offset_{};
S* get_valid_pointer(const size_t element_index) const
{
const auto start_offset = offset_ + (size * element_index);
const auto end_offset = start_offset + size;
if (end_offset > buffer_.size())
{
throw std::runtime_error("Buffer accessor overflow");
}
S* get_valid_pointer(const size_t element_index) const
{
const auto start_offset = offset_ + (size * element_index);
const auto end_offset = start_offset + size;
if (end_offset > buffer_.size())
{
throw std::runtime_error("Buffer accessor overflow");
}
return buffer_.data() + start_offset;
}
};
return buffer_.data() + start_offset;
}
};
template <typename T>
requires(std::is_same_v<uint8_t, std::remove_cv_t<T>>)
class safe_buffer_accessor
{
public:
safe_buffer_accessor(const std::span<T> buffer)
: buffer_(buffer)
{
}
template <typename T>
requires(std::is_same_v<uint8_t, std::remove_cv_t<T>>)
class safe_buffer_accessor
{
public:
safe_buffer_accessor(const std::span<T> buffer)
: buffer_(buffer)
{
}
template <typename S>
safe_buffer_accessor(const safe_buffer_accessor<S>& obj)
: buffer_(obj.get_buffer())
{
}
template <typename S>
safe_buffer_accessor(const safe_buffer_accessor<S>& obj)
: buffer_(obj.get_buffer())
{
}
template <typename S>
safe_object_accessor<S, T> as(const size_t offset) const
{
return {this->buffer_, offset};
}
template <typename S>
safe_object_accessor<S, T> as(const size_t offset) const
{
return {this->buffer_, offset};
}
T* get_pointer_for_range(const size_t offset, const size_t size) const
{
this->validate(offset, size);
return this->buffer_.data() + offset;
}
T* get_pointer_for_range(const size_t offset, const size_t size) const
{
this->validate(offset, size);
return this->buffer_.data() + offset;
}
void validate(const size_t offset, const size_t size) const
{
const auto end = offset + size;
if (end > buffer_.size())
{
throw std::runtime_error("Buffer accessor overflow");
}
}
void validate(const size_t offset, const size_t size) const
{
const auto end = offset + size;
if (end > buffer_.size())
{
throw std::runtime_error("Buffer accessor overflow");
}
}
template <typename S = char>
std::basic_string<S> as_string(const size_t offset) const
{
safe_object_accessor<S> string_accessor{this->buffer_, offset};
std::basic_string<S> result{};
template <typename S = char>
std::basic_string<S> as_string(const size_t offset) const
{
safe_object_accessor<S> string_accessor{this->buffer_, offset};
std::basic_string<S> result{};
while (true)
{
auto value = string_accessor.get(result.size());
if (!value)
{
return result;
}
while (true)
{
auto value = string_accessor.get(result.size());
if (!value)
{
return result;
}
result.push_back(std::move(value));
}
}
result.push_back(std::move(value));
}
}
std::span<T> get_buffer() const
{
return this->buffer_;
}
std::span<T> get_buffer() const
{
return this->buffer_;
}
private:
const std::span<T> buffer_{};
};
private:
const std::span<T> buffer_{};
};
}

View File

@@ -4,54 +4,60 @@
namespace utils::concurrency
{
template <typename T, typename MutexType = std::mutex>
class container
{
public:
template <typename R = void, typename F>
R access(F&& accessor) const
{
std::lock_guard<MutexType> _{mutex_};
return accessor(object_);
}
template <typename T, typename MutexType = std::mutex>
class container
{
public:
template <typename R = void, typename F>
R access(F&& accessor) const
{
std::lock_guard<MutexType> _{mutex_};
return accessor(object_);
}
template <typename R = void, typename F>
R access(F&& accessor)
{
std::lock_guard<MutexType> _{mutex_};
return accessor(object_);
}
template <typename R = void, typename F>
R access(F&& accessor)
{
std::lock_guard<MutexType> _{mutex_};
return accessor(object_);
}
template <typename R = void, typename F>
R access_with_lock(F&& accessor) const
{
std::unique_lock<MutexType> lock{mutex_};
return accessor(object_, lock);
}
template <typename R = void, typename F>
R access_with_lock(F&& accessor) const
{
std::unique_lock<MutexType> lock{mutex_};
return accessor(object_, lock);
}
template <typename R = void, typename F>
R access_with_lock(F&& accessor)
{
std::unique_lock<MutexType> lock{mutex_};
return accessor(object_, lock);
}
template <typename R = void, typename F>
R access_with_lock(F&& accessor)
{
std::unique_lock<MutexType> lock{mutex_};
return accessor(object_, lock);
}
T& get_raw() { return object_; }
const T& get_raw() const { return object_; }
T& get_raw()
{
return object_;
}
const T& get_raw() const
{
return object_;
}
T copy() const
{
std::unique_lock<MutexType> lock{mutex_};
return object_;
}
T copy() const
{
std::unique_lock<MutexType> lock{mutex_};
return object_;
}
std::unique_lock<MutexType> acquire_lock()
{
return std::unique_lock<MutexType>{mutex_};
}
std::unique_lock<MutexType> acquire_lock()
{
return std::unique_lock<MutexType>{mutex_};
}
private:
mutable MutexType mutex_{};
T object_{};
};
private:
mutable MutexType mutex_{};
T object_{};
};
}

View File

@@ -7,19 +7,19 @@
namespace utils
{
struct string_hash
{
using is_transparent = void;
struct string_hash
{
using is_transparent = void;
size_t operator()(const std::string_view str) const
{
constexpr std::hash<std::string_view> hasher{};
return hasher(str);
}
};
size_t operator()(const std::string_view str) const
{
constexpr std::hash<std::string_view> hasher{};
return hasher(str);
}
};
template <typename T>
using unordered_string_map = std::unordered_map<std::string, T, string_hash, std::equal_to<>>;
template <typename T>
using unordered_string_map = std::unordered_map<std::string, T, string_hash, std::equal_to<>>;
using unordered_string_set = std::unordered_set<std::string, string_hash, std::equal_to<>>;
using unordered_string_set = std::unordered_set<std::string, string_hash, std::equal_to<>>;
}

View File

@@ -5,91 +5,91 @@
namespace utils
{
class file_handle
{
public:
file_handle() = default;
class file_handle
{
public:
file_handle() = default;
file_handle(FILE* file)
: file_(file)
{
}
file_handle(FILE* file)
: file_(file)
{
}
~file_handle()
{
this->release();
}
~file_handle()
{
this->release();
}
file_handle(const file_handle&) = delete;
file_handle& operator=(const file_handle&) = delete;
file_handle(const file_handle&) = delete;
file_handle& operator=(const file_handle&) = delete;
file_handle(file_handle&& obj) noexcept
: file_handle()
{
this->operator=(std::move(obj));
}
file_handle(file_handle&& obj) noexcept
: file_handle()
{
this->operator=(std::move(obj));
}
file_handle& operator=(file_handle&& obj) noexcept
{
if (this != &obj)
{
this->release();
this->file_ = obj.file_;
obj.file_ = {};
}
file_handle& operator=(file_handle&& obj) noexcept
{
if (this != &obj)
{
this->release();
this->file_ = obj.file_;
obj.file_ = {};
}
return *this;
}
return *this;
}
file_handle& operator=(FILE* file) noexcept
{
this->release();
this->file_ = file;
file_handle& operator=(FILE* file) noexcept
{
this->release();
this->file_ = file;
return *this;
}
return *this;
}
[[nodiscard]] operator bool() const
{
return this->file_;
}
[[nodiscard]] operator bool() const
{
return this->file_;
}
[[nodiscard]] operator FILE*() const
{
return this->file_;
}
[[nodiscard]] operator FILE*() const
{
return this->file_;
}
[[nodiscard]] int64_t size() const
{
const auto current_position = this->tell();
[[nodiscard]] int64_t size() const
{
const auto current_position = this->tell();
this->seek_to(0, SEEK_END);
const auto size = this->tell();
this->seek_to(current_position);
this->seek_to(0, SEEK_END);
const auto size = this->tell();
this->seek_to(current_position);
return size;
}
return size;
}
bool seek_to(const int64_t position, const int origin = SEEK_SET) const
{
return _fseeki64(this->file_, position, origin) == 0;
}
bool seek_to(const int64_t position, const int origin = SEEK_SET) const
{
return _fseeki64(this->file_, position, origin) == 0;
}
[[nodiscard]] int64_t tell() const
{
return _ftelli64(this->file_);
}
[[nodiscard]] int64_t tell() const
{
return _ftelli64(this->file_);
}
private:
FILE* file_{};
private:
FILE* file_{};
void release()
{
if (this->file_)
{
(void)fclose(this->file_);
this->file_ = {};
}
}
};
void release()
{
if (this->file_)
{
(void)fclose(this->file_);
this->file_ = {};
}
}
};
}

View File

@@ -4,52 +4,53 @@
namespace utils
{
/*
* Copied from here: https://github.com/microsoft/GSL/blob/e0880931ae5885eb988d1a8a57acf8bc2b8dacda/include/gsl/util#L57
*/
/*
* Copied from here:
* https://github.com/microsoft/GSL/blob/e0880931ae5885eb988d1a8a57acf8bc2b8dacda/include/gsl/util#L57
*/
template <class F>
class final_action
{
public:
static_assert(!std::is_reference<F>::value && !std::is_const<F>::value &&
!std::is_volatile<F>::value,
"Final_action should store its callable by value");
template <class F>
class final_action
{
public:
static_assert(!std::is_reference<F>::value && !std::is_const<F>::value && !std::is_volatile<F>::value,
"Final_action should store its callable by value");
explicit final_action(F f) noexcept : f_(std::move(f))
{
}
explicit final_action(F f) noexcept
: f_(std::move(f))
{
}
final_action(final_action&& other) noexcept
: f_(std::move(other.f_)), invoke_(std::exchange(other.invoke_, false))
{
}
final_action(final_action&& other) noexcept
: f_(std::move(other.f_)),
invoke_(std::exchange(other.invoke_, false))
{
}
final_action(const final_action&) = delete;
final_action& operator=(const final_action&) = delete;
final_action& operator=(final_action&&) = delete;
final_action(const final_action&) = delete;
final_action& operator=(const final_action&) = delete;
final_action& operator=(final_action&&) = delete;
~final_action() noexcept
{
if (invoke_) f_();
}
~final_action() noexcept
{
if (invoke_)
f_();
}
// Added by momo5502
void cancel()
{
invoke_ = false;
}
// Added by momo5502
void cancel()
{
invoke_ = false;
}
private:
F f_;
bool invoke_{true};
};
private:
F f_;
bool invoke_{true};
};
template <class F>
final_action<typename std::remove_cv<typename std::remove_reference<F>::type>::type>
finally(F&& f) noexcept
{
return final_action<typename std::remove_cv<typename std::remove_reference<F>::type>::type>(
std::forward<F>(f));
}
template <class F>
final_action<typename std::remove_cv<typename std::remove_reference<F>::type>::type> finally(F&& f) noexcept
{
return final_action<typename std::remove_cv<typename std::remove_reference<F>::type>::type>(std::forward<F>(f));
}
}

View File

@@ -4,121 +4,123 @@
namespace utils::io
{
bool remove_file(const std::filesystem::path& file)
{
std::error_code ec{};
return std::filesystem::remove(file, ec) && !ec;
}
bool remove_file(const std::filesystem::path& file)
{
std::error_code ec{};
return std::filesystem::remove(file, ec) && !ec;
}
bool move_file(const std::filesystem::path& src, const std::filesystem::path& target)
{
copy_folder(src, target);
return remove_file(src);
}
bool move_file(const std::filesystem::path& src, const std::filesystem::path& target)
{
copy_folder(src, target);
return remove_file(src);
}
bool file_exists(const std::filesystem::path& file)
{
return std::ifstream(file).good();
}
bool file_exists(const std::filesystem::path& file)
{
return std::ifstream(file).good();
}
bool write_file(const std::filesystem::path& file, const std::vector<uint8_t>& data, const bool append)
{
if (file.has_parent_path())
{
io::create_directory(file.parent_path());
}
bool write_file(const std::filesystem::path& file, const std::vector<uint8_t>& data, const bool append)
{
if (file.has_parent_path())
{
io::create_directory(file.parent_path());
}
std::ofstream stream(
file, std::ios::binary | std::ofstream::out | (append ? std::ofstream::app : std::ofstream::out));
std::ofstream stream(file, std::ios::binary | std::ofstream::out |
(append ? std::ofstream::app : std::ofstream::out));
if (stream.is_open())
{
stream.write(reinterpret_cast<const char*>(data.data()), static_cast<std::streamsize>(data.size()));
stream.close();
return true;
}
if (stream.is_open())
{
stream.write(reinterpret_cast<const char*>(data.data()), static_cast<std::streamsize>(data.size()));
stream.close();
return true;
}
return false;
}
return false;
}
std::vector<uint8_t> read_file(const std::filesystem::path& file)
{
std::vector<uint8_t> data;
read_file(file, &data);
return data;
}
std::vector<uint8_t> read_file(const std::filesystem::path& file)
{
std::vector<uint8_t> data;
read_file(file, &data);
return data;
}
bool read_file(const std::filesystem::path& file, std::vector<uint8_t>* data)
{
if (!data) return false;
data->clear();
bool read_file(const std::filesystem::path& file, std::vector<uint8_t>* data)
{
if (!data)
return false;
data->clear();
std::ifstream stream(file, std::ios::binary);
if (!stream) return false;
std::ifstream stream(file, std::ios::binary);
if (!stream)
return false;
*data = std::vector<uint8_t>{(std::istreambuf_iterator<char>(stream)), std::istreambuf_iterator<char>()};
return true;
}
*data = std::vector<uint8_t>{(std::istreambuf_iterator<char>(stream)), std::istreambuf_iterator<char>()};
return true;
}
std::size_t file_size(const std::filesystem::path& file)
{
std::ifstream stream(file, std::ios::binary);
std::size_t file_size(const std::filesystem::path& file)
{
std::ifstream stream(file, std::ios::binary);
if (stream)
{
stream.seekg(0, std::ios::end);
return static_cast<std::size_t>(stream.tellg());
}
if (stream)
{
stream.seekg(0, std::ios::end);
return static_cast<std::size_t>(stream.tellg());
}
return 0;
}
return 0;
}
bool create_directory(const std::filesystem::path& directory)
{
std::error_code ec{};
return std::filesystem::create_directories(directory, ec) && !ec;
}
bool create_directory(const std::filesystem::path& directory)
{
std::error_code ec{};
return std::filesystem::create_directories(directory, ec) && !ec;
}
bool directory_exists(const std::filesystem::path& directory)
{
std::error_code ec{};
return std::filesystem::is_directory(directory, ec) && !ec;
}
bool directory_exists(const std::filesystem::path& directory)
{
std::error_code ec{};
return std::filesystem::is_directory(directory, ec) && !ec;
}
bool directory_is_empty(const std::filesystem::path& directory)
{
std::error_code ec{};
return std::filesystem::is_empty(directory, ec) && !ec;
}
bool directory_is_empty(const std::filesystem::path& directory)
{
std::error_code ec{};
return std::filesystem::is_empty(directory, ec) && !ec;
}
void copy_folder(const std::filesystem::path& src, const std::filesystem::path& target)
{
std::error_code ec{};
std::filesystem::copy(src, target,
std::filesystem::copy_options::overwrite_existing |
std::filesystem::copy_options::recursive, ec);
}
void copy_folder(const std::filesystem::path& src, const std::filesystem::path& target)
{
std::error_code ec{};
std::filesystem::copy(
src, target, std::filesystem::copy_options::overwrite_existing | std::filesystem::copy_options::recursive,
ec);
}
std::vector<std::filesystem::path> list_files(const std::filesystem::path& directory, const bool recursive)
{
std::error_code code{};
std::vector<std::filesystem::path> files;
std::vector<std::filesystem::path> list_files(const std::filesystem::path& directory, const bool recursive)
{
std::error_code code{};
std::vector<std::filesystem::path> files;
if (recursive)
{
for (auto& file : std::filesystem::recursive_directory_iterator(directory, code))
{
files.push_back(file.path());
}
}
else
{
for (auto& file : std::filesystem::directory_iterator(directory, code))
{
files.push_back(file.path());
}
}
if (recursive)
{
for (auto& file : std::filesystem::recursive_directory_iterator(directory, code))
{
files.push_back(file.path());
}
}
else
{
for (auto& file : std::filesystem::directory_iterator(directory, code))
{
files.push_back(file.path());
}
}
return files;
}
return files;
}
}

View File

@@ -6,17 +6,17 @@
namespace utils::io
{
bool remove_file(const std::filesystem::path& file);
bool move_file(const std::filesystem::path& src, const std::filesystem::path& target);
bool file_exists(const std::filesystem::path& file);
bool write_file(const std::filesystem::path& file, const std::vector<uint8_t>& data, bool append = false);
bool read_file(const std::filesystem::path& file, std::vector<uint8_t>* data);
std::vector<uint8_t> read_file(const std::filesystem::path& file);
size_t file_size(const std::filesystem::path& file);
bool create_directory(const std::filesystem::path& directory);
bool directory_exists(const std::filesystem::path& directory);
bool directory_is_empty(const std::filesystem::path& directory);
void copy_folder(const std::filesystem::path& src, const std::filesystem::path& target);
bool remove_file(const std::filesystem::path& file);
bool move_file(const std::filesystem::path& src, const std::filesystem::path& target);
bool file_exists(const std::filesystem::path& file);
bool write_file(const std::filesystem::path& file, const std::vector<uint8_t>& data, bool append = false);
bool read_file(const std::filesystem::path& file, std::vector<uint8_t>* data);
std::vector<uint8_t> read_file(const std::filesystem::path& file);
size_t file_size(const std::filesystem::path& file);
bool create_directory(const std::filesystem::path& directory);
bool directory_exists(const std::filesystem::path& directory);
bool directory_is_empty(const std::filesystem::path& directory);
void copy_folder(const std::filesystem::path& src, const std::filesystem::path& target);
std::vector<std::filesystem::path> list_files(const std::filesystem::path& directory, bool recursive = false);
std::vector<std::filesystem::path> list_files(const std::filesystem::path& directory, bool recursive = false);
}

View File

@@ -10,80 +10,80 @@
namespace utils::nt
{
using HandleFunction = HANDLE();
using HandleFunction = HANDLE();
inline HANDLE null_handle()
{
return nullptr;
}
inline HANDLE null_handle()
{
return nullptr;
}
inline HANDLE invalid_handle()
{
return INVALID_HANDLE_VALUE;
}
inline HANDLE invalid_handle()
{
return INVALID_HANDLE_VALUE;
}
template <HandleFunction InvalidHandleFunction = null_handle>
class handle
{
public:
handle() = default;
template <HandleFunction InvalidHandleFunction = null_handle>
class handle
{
public:
handle() = default;
handle(const HANDLE h)
: handle_(h)
{
}
handle(const HANDLE h)
: handle_(h)
{
}
~handle()
{
if (*this)
{
CloseHandle(this->handle_);
this->handle_ = InvalidHandleFunction();
}
}
~handle()
{
if (*this)
{
CloseHandle(this->handle_);
this->handle_ = InvalidHandleFunction();
}
}
handle(const handle&) = delete;
handle& operator=(const handle&) = delete;
handle(const handle&) = delete;
handle& operator=(const handle&) = delete;
handle(handle&& obj) noexcept
: handle()
{
this->operator=(std::move(obj));
}
handle(handle&& obj) noexcept
: handle()
{
this->operator=(std::move(obj));
}
handle& operator=(handle&& obj) noexcept
{
if (this != &obj)
{
this->~handle();
this->handle_ = obj.handle_;
obj.handle_ = InvalidHandleFunction();
}
handle& operator=(handle&& obj) noexcept
{
if (this != &obj)
{
this->~handle();
this->handle_ = obj.handle_;
obj.handle_ = InvalidHandleFunction();
}
return *this;
}
return *this;
}
handle& operator=(HANDLE h) noexcept
{
this->~handle();
this->handle_ = h;
handle& operator=(HANDLE h) noexcept
{
this->~handle();
this->handle_ = h;
return *this;
}
return *this;
}
[[nodiscard]] operator bool() const
{
return this->handle_ != InvalidHandleFunction();
}
[[nodiscard]] operator bool() const
{
return this->handle_ != InvalidHandleFunction();
}
[[nodiscard]] operator HANDLE() const
{
return this->handle_;
}
[[nodiscard]] operator HANDLE() const
{
return this->handle_;
}
private:
HANDLE handle_{InvalidHandleFunction()};
};
private:
HANDLE handle_{InvalidHandleFunction()};
};
}
#endif

View File

@@ -6,45 +6,42 @@
namespace utils::string
{
inline char char_to_lower(const char val)
{
return static_cast<char>(std::tolower(static_cast<unsigned char>(val)));
}
inline char char_to_lower(const char val)
{
return static_cast<char>(std::tolower(static_cast<unsigned char>(val)));
}
inline char16_t char_to_lower(const char16_t val)
{
if (val >= u'A' && val <= u'Z')
{
return val + 32;
}
inline char16_t char_to_lower(const char16_t val)
{
if (val >= u'A' && val <= u'Z')
{
return val + 32;
}
return val;
}
return val;
}
inline wchar_t char_to_lower(const wchar_t val)
{
return std::towlower(val);
}
inline wchar_t char_to_lower(const wchar_t val)
{
return std::towlower(val);
}
template <class Elem, class Traits, class Alloc>
void to_lower_inplace(std::basic_string<Elem, Traits, Alloc>& str)
{
std::ranges::transform(str, str.begin(), [](const Elem e)
{
return char_to_lower(e);
});
}
template <class Elem, class Traits, class Alloc>
void to_lower_inplace(std::basic_string<Elem, Traits, Alloc>& str)
{
std::ranges::transform(str, str.begin(), [](const Elem e) { return char_to_lower(e); });
}
template <class Elem, class Traits, class Alloc>
std::basic_string<Elem, Traits, Alloc> to_lower(std::basic_string<Elem, Traits, Alloc> str)
{
to_lower_inplace(str);
return str;
}
template <class Elem, class Traits, class Alloc>
std::basic_string<Elem, Traits, Alloc> to_lower(std::basic_string<Elem, Traits, Alloc> str)
{
to_lower_inplace(str);
return str;
}
template <class Elem, class Traits, class Alloc>
std::basic_string<Elem, Traits, Alloc> to_lower_consume(std::basic_string<Elem, Traits, Alloc>& str)
{
return to_lower(std::move(str));
}
template <class Elem, class Traits, class Alloc>
std::basic_string<Elem, Traits, Alloc> to_lower_consume(std::basic_string<Elem, Traits, Alloc>& str)
{
return to_lower(std::move(str));
}
}

View File

@@ -4,23 +4,23 @@
namespace utils
{
template <typename Clock = std::chrono::high_resolution_clock>
class timer
{
public:
void update()
{
this->point_ = Clock::now();
}
template <typename Clock = std::chrono::high_resolution_clock>
class timer
{
public:
void update()
{
this->point_ = Clock::now();
}
bool has_elapsed(typename Clock::duration duration) const
{
const auto now = Clock::now();
const auto diff = now - this->point_;
return diff > duration;
}
bool has_elapsed(typename Clock::duration duration) const
{
const auto now = Clock::now();
const auto diff = now - this->point_;
return diff > duration;
}
private:
typename Clock::time_point point_{Clock::now()};
};
private:
typename Clock::time_point point_{Clock::now()};
};
}

View File

@@ -4,52 +4,52 @@
template <typename T>
T* offset_pointer(void* data, const size_t offset)
{
return reinterpret_cast<T*>(static_cast<uint8_t*>(data) + offset);
return reinterpret_cast<T*>(static_cast<uint8_t*>(data) + offset);
}
template <typename T>
const T* offset_pointer(const void* data, const size_t offset)
{
return reinterpret_cast<const T*>(static_cast<const uint8_t*>(data) + offset);
return reinterpret_cast<const T*>(static_cast<const uint8_t*>(data) + offset);
}
constexpr bool is_within_start_and_end(const uint64_t value, const uint64_t start, const uint64_t end)
{
return value >= start && value < end;
return value >= start && value < end;
}
constexpr bool is_within_start_and_length(const uint64_t value, const uint64_t start, const uint64_t length)
{
return is_within_start_and_end(value, start, start + length);
return is_within_start_and_end(value, start, start + length);
}
constexpr bool regions_intersect(const uint64_t start1, const uint64_t end1, const uint64_t start2, const uint64_t end2)
{
return start1 < end2 && start2 < end1;
return start1 < end2 && start2 < end1;
}
constexpr bool regions_with_length_intersect(const uint64_t start1, const uint64_t length1, const uint64_t start2,
const uint64_t length2)
{
return regions_intersect(start1, start1 + length1, start2, start2 + length2);
return regions_intersect(start1, start1 + length1, start2, start2 + length2);
}
constexpr uint64_t align_down(const uint64_t value, const uint64_t alignment)
{
return value & ~(alignment - 1);
return value & ~(alignment - 1);
}
constexpr uint64_t align_up(const uint64_t value, const uint64_t alignment)
{
return align_down(value + (alignment - 1), alignment);
return align_down(value + (alignment - 1), alignment);
}
constexpr uint64_t page_align_down(const uint64_t value, const uint64_t page_size = 0x1000)
{
return align_down(value, page_size);
return align_down(value, page_size);
}
constexpr uint64_t page_align_up(const uint64_t value, const uint64_t page_size = 0x1000)
{
return align_up(value, page_size);
return align_up(value, page_size);
}

View File

@@ -11,156 +11,152 @@ using memory_operation = memory_permission;
enum class instruction_hook_continuation : bool
{
run_instruction = false,
skip_instruction = true,
run_instruction = false,
skip_instruction = true,
};
enum class memory_violation_continuation : bool
{
stop = false,
resume = true,
stop = false,
resume = true,
};
enum class memory_violation_type : uint8_t
{
unmapped,
protection,
unmapped,
protection,
};
struct basic_block
{
uint64_t address;
size_t instruction_count;
size_t size;
uint64_t address;
size_t instruction_count;
size_t size;
};
using edge_generation_hook_callback = std::function<void(const basic_block& current_block,
const basic_block& previous_block)>;
using edge_generation_hook_callback =
std::function<void(const basic_block& current_block, const basic_block& previous_block)>;
using basic_block_hook_callback = std::function<void(const basic_block& block)>;
using instruction_hook_callback = std::function<instruction_hook_continuation()>;
using interrupt_hook_callback = std::function<void(int interrupt)>;
using simple_memory_hook_callback = std::function<void(uint64_t address, size_t size, uint64_t value)>;
using complex_memory_hook_callback = std::function<void(uint64_t address, size_t size, uint64_t value,
memory_operation operation)>;
using complex_memory_hook_callback =
std::function<void(uint64_t address, size_t size, uint64_t value, memory_operation operation)>;
using memory_violation_hook_callback = std::function<memory_violation_continuation(
uint64_t address, size_t size, memory_operation operation,
memory_violation_type type)>;
uint64_t address, size_t size, memory_operation operation, memory_violation_type type)>;
class emulator : public memory_manager
{
public:
emulator() = default;
public:
emulator() = default;
emulator(const emulator&) = delete;
emulator& operator=(const emulator&) = delete;
emulator(const emulator&) = delete;
emulator& operator=(const emulator&) = delete;
emulator(emulator&&) = delete;
emulator& operator=(emulator&&) = delete;
emulator(emulator&&) = delete;
emulator& operator=(emulator&&) = delete;
virtual void start(uint64_t start, uint64_t end = 0, std::chrono::nanoseconds timeout = {}, size_t count = 0) = 0;
virtual void stop() = 0;
virtual void start(uint64_t start, uint64_t end = 0, std::chrono::nanoseconds timeout = {}, size_t count = 0) = 0;
virtual void stop() = 0;
virtual void read_raw_register(int reg, void* value, size_t size) = 0;
virtual void write_raw_register(int reg, const void* value, size_t size) = 0;
virtual void read_raw_register(int reg, void* value, size_t size) = 0;
virtual void write_raw_register(int reg, const void* value, size_t size) = 0;
virtual std::vector<std::byte> save_registers() = 0;
virtual void restore_registers(const std::vector<std::byte>& register_data) = 0;
virtual std::vector<std::byte> save_registers() = 0;
virtual void restore_registers(const std::vector<std::byte>& register_data) = 0;
virtual emulator_hook* hook_memory_violation(uint64_t address, size_t size,
memory_violation_hook_callback callback) = 0;
virtual emulator_hook* hook_memory_violation(uint64_t address, size_t size,
memory_violation_hook_callback callback) = 0;
virtual emulator_hook* hook_memory_access(uint64_t address, size_t size, memory_operation filter,
complex_memory_hook_callback callback) = 0;
virtual emulator_hook* hook_instruction(int instruction_type, instruction_hook_callback callback) = 0;
virtual emulator_hook* hook_memory_access(uint64_t address, size_t size, memory_operation filter,
complex_memory_hook_callback callback) = 0;
virtual emulator_hook* hook_instruction(int instruction_type, instruction_hook_callback callback) = 0;
virtual emulator_hook* hook_interrupt(interrupt_hook_callback callback) = 0;
virtual emulator_hook* hook_interrupt(interrupt_hook_callback callback) = 0;
virtual emulator_hook* hook_edge_generation(edge_generation_hook_callback callback) = 0;
virtual emulator_hook* hook_basic_block(basic_block_hook_callback callback) = 0;
virtual emulator_hook* hook_edge_generation(edge_generation_hook_callback callback) = 0;
virtual emulator_hook* hook_basic_block(basic_block_hook_callback callback) = 0;
virtual void delete_hook(emulator_hook* hook) = 0;
virtual void delete_hook(emulator_hook* hook) = 0;
emulator_hook* hook_memory_violation(memory_violation_hook_callback callback)
{
return this->hook_memory_violation(0, std::numeric_limits<size_t>::max(), std::move(callback));
}
emulator_hook* hook_memory_violation(memory_violation_hook_callback callback)
{
return this->hook_memory_violation(0, std::numeric_limits<size_t>::max(), std::move(callback));
}
emulator_hook* hook_memory_read(const uint64_t address, const size_t size, simple_memory_hook_callback callback)
{
return this->hook_simple_memory_access(address, size, std::move(callback), memory_operation::read);
}
emulator_hook* hook_memory_read(const uint64_t address, const size_t size, simple_memory_hook_callback callback)
{
return this->hook_simple_memory_access(address, size, std::move(callback), memory_operation::read);
}
emulator_hook* hook_memory_write(const uint64_t address, const size_t size, simple_memory_hook_callback callback)
{
return this->hook_simple_memory_access(address, size, std::move(callback), memory_operation::write);
}
emulator_hook* hook_memory_write(const uint64_t address, const size_t size, simple_memory_hook_callback callback)
{
return this->hook_simple_memory_access(address, size, std::move(callback), memory_operation::write);
}
emulator_hook* hook_memory_execution(const uint64_t address, const size_t size,
simple_memory_hook_callback callback)
{
return this->hook_simple_memory_access(address, size, std::move(callback), memory_operation::exec);
}
emulator_hook* hook_memory_execution(const uint64_t address, const size_t size,
simple_memory_hook_callback callback)
{
return this->hook_simple_memory_access(address, size, std::move(callback), memory_operation::exec);
}
void serialize(utils::buffer_serializer& buffer) const
{
this->perform_serialization(buffer, false);
}
void serialize(utils::buffer_serializer& buffer) const
{
this->perform_serialization(buffer, false);
}
void deserialize(utils::buffer_deserializer& buffer)
{
this->perform_deserialization(buffer, false);
}
void deserialize(utils::buffer_deserializer& buffer)
{
this->perform_deserialization(buffer, false);
}
void save_snapshot()
{
utils::buffer_serializer serializer{};
this->perform_serialization(serializer, true);
this->last_snapshot_data_ = serializer.move_buffer();
}
void save_snapshot()
{
utils::buffer_serializer serializer{};
this->perform_serialization(serializer, true);
this->last_snapshot_data_ = serializer.move_buffer();
}
void restore_snapshot()
{
if (this->last_snapshot_data_.empty())
{
return;
}
void restore_snapshot()
{
if (this->last_snapshot_data_.empty())
{
return;
}
utils::buffer_deserializer deserializer{this->last_snapshot_data_};
this->perform_deserialization(deserializer, true);
}
utils::buffer_deserializer deserializer{this->last_snapshot_data_};
this->perform_deserialization(deserializer, true);
}
virtual bool has_violation() const = 0;
virtual bool has_violation() const = 0;
private:
std::vector<std::byte> last_snapshot_data_{};
private:
std::vector<std::byte> last_snapshot_data_{};
emulator_hook* hook_simple_memory_access(const uint64_t address, const size_t size,
simple_memory_hook_callback callback, const memory_operation operation)
{
assert((static_cast<uint8_t>(operation) & (static_cast<uint8_t>(operation) - 1)) == 0);
return this->hook_memory_access(address, size, operation,
[c = std::move(callback)](const uint64_t a, const size_t s,
const uint64_t value,
memory_operation)
{
c(a, s, value);
});
}
emulator_hook* hook_simple_memory_access(const uint64_t address, const size_t size,
simple_memory_hook_callback callback, const memory_operation operation)
{
assert((static_cast<uint8_t>(operation) & (static_cast<uint8_t>(operation) - 1)) == 0);
return this->hook_memory_access(address, size, operation,
[c = std::move(callback)](const uint64_t a, const size_t s,
const uint64_t value,
memory_operation) { c(a, s, value); });
}
void perform_serialization(utils::buffer_serializer& buffer, const bool is_snapshot) const
{
this->serialize_state(buffer, is_snapshot);
this->serialize_memory_state(buffer, is_snapshot);
}
void perform_serialization(utils::buffer_serializer& buffer, const bool is_snapshot) const
{
this->serialize_state(buffer, is_snapshot);
this->serialize_memory_state(buffer, is_snapshot);
}
void perform_deserialization(utils::buffer_deserializer& buffer, const bool is_snapshot)
{
this->deserialize_state(buffer, is_snapshot);
this->deserialize_memory_state(buffer, is_snapshot);
}
void perform_deserialization(utils::buffer_deserializer& buffer, const bool is_snapshot)
{
this->deserialize_state(buffer, is_snapshot);
this->deserialize_memory_state(buffer, is_snapshot);
}
virtual void serialize_state(utils::buffer_serializer& buffer, bool is_snapshot) const = 0;
virtual void deserialize_state(utils::buffer_deserializer& buffer, bool is_snapshot) = 0;
virtual void serialize_state(utils::buffer_serializer& buffer, bool is_snapshot) const = 0;
virtual void deserialize_state(utils::buffer_deserializer& buffer, bool is_snapshot) = 0;
};

View File

@@ -10,541 +10,547 @@
namespace
{
constexpr auto MIN_ALLOCATION_ADDRESS = 0x0000000000010000ULL;
constexpr auto MAX_ALLOCATION_ADDRESS = 0x00007ffffffeffffULL;
constexpr auto MIN_ALLOCATION_ADDRESS = 0x0000000000010000ULL;
constexpr auto MAX_ALLOCATION_ADDRESS = 0x00007ffffffeffffULL;
void split_regions(memory_manager::committed_region_map& regions, const std::vector<uint64_t>& split_points)
{
for (auto i = regions.begin(); i != regions.end(); ++i)
{
for (const auto split_point : split_points)
{
if (is_within_start_and_length(split_point, i->first, i->second.length) && i->first != split_point)
{
const auto first_length = split_point - i->first;
const auto second_length = i->second.length - first_length;
void split_regions(memory_manager::committed_region_map& regions, const std::vector<uint64_t>& split_points)
{
for (auto i = regions.begin(); i != regions.end(); ++i)
{
for (const auto split_point : split_points)
{
if (is_within_start_and_length(split_point, i->first, i->second.length) && i->first != split_point)
{
const auto first_length = split_point - i->first;
const auto second_length = i->second.length - first_length;
i->second.length = first_length;
i->second.length = first_length;
regions[split_point] = memory_manager::committed_region{second_length, i->second.pemissions};
}
}
}
}
regions[split_point] = memory_manager::committed_region{second_length, i->second.pemissions};
}
}
}
}
void merge_regions(memory_manager::committed_region_map& regions)
{
for (auto i = regions.begin(); i != regions.end();)
{
assert(i->second.length > 0);
void merge_regions(memory_manager::committed_region_map& regions)
{
for (auto i = regions.begin(); i != regions.end();)
{
assert(i->second.length > 0);
auto next = i;
std::advance(next, 1);
auto next = i;
std::advance(next, 1);
if (next == regions.end())
{
break;
}
if (next == regions.end())
{
break;
}
assert(next->second.length > 0);
assert(next->second.length > 0);
const auto end = i->first + i->second.length;
assert(end <= next->first);
const auto end = i->first + i->second.length;
assert(end <= next->first);
if (end != next->first || i->second.pemissions != next->second.pemissions)
{
++i;
continue;
}
if (end != next->first || i->second.pemissions != next->second.pemissions)
{
++i;
continue;
}
i->second.length += next->second.length;
regions.erase(next);
}
}
i->second.length += next->second.length;
regions.erase(next);
}
}
}
namespace utils
{
static void serialize(buffer_serializer& buffer, const memory_manager::committed_region& region)
{
buffer.write<uint64_t>(region.length);
buffer.write(region.pemissions);
}
static void serialize(buffer_serializer& buffer, const memory_manager::committed_region& region)
{
buffer.write<uint64_t>(region.length);
buffer.write(region.pemissions);
}
static void deserialize(buffer_deserializer& buffer, memory_manager::committed_region& region)
{
region.length = static_cast<size_t>(buffer.read<uint64_t>());
region.pemissions = buffer.read<memory_permission>();
}
static void deserialize(buffer_deserializer& buffer, memory_manager::committed_region& region)
{
region.length = static_cast<size_t>(buffer.read<uint64_t>());
region.pemissions = buffer.read<memory_permission>();
}
static void serialize(buffer_serializer& buffer, const memory_manager::reserved_region& region)
{
buffer.write(region.is_mmio);
buffer.write<uint64_t>(region.length);
buffer.write_map(region.committed_regions);
}
static void serialize(buffer_serializer& buffer, const memory_manager::reserved_region& region)
{
buffer.write(region.is_mmio);
buffer.write<uint64_t>(region.length);
buffer.write_map(region.committed_regions);
}
static void deserialize(buffer_deserializer& buffer, memory_manager::reserved_region& region)
{
buffer.read(region.is_mmio);
region.length = static_cast<size_t>(buffer.read<uint64_t>());
buffer.read_map(region.committed_regions);
}
static void deserialize(buffer_deserializer& buffer, memory_manager::reserved_region& region)
{
buffer.read(region.is_mmio);
region.length = static_cast<size_t>(buffer.read<uint64_t>());
buffer.read_map(region.committed_regions);
}
}
void memory_manager::serialize_memory_state(utils::buffer_serializer& buffer, const bool is_snapshot) const
{
buffer.write_map(this->reserved_regions_);
buffer.write_map(this->reserved_regions_);
if (is_snapshot)
{
return;
}
if (is_snapshot)
{
return;
}
std::vector<uint8_t> data{};
std::vector<uint8_t> data{};
for (const auto& reserved_region : this->reserved_regions_)
{
if (reserved_region.second.is_mmio)
{
continue;
}
for (const auto& reserved_region : this->reserved_regions_)
{
if (reserved_region.second.is_mmio)
{
continue;
}
for (const auto& region : reserved_region.second.committed_regions)
{
data.resize(region.second.length);
for (const auto& region : reserved_region.second.committed_regions)
{
data.resize(region.second.length);
this->read_memory(region.first, data.data(), region.second.length);
this->read_memory(region.first, data.data(), region.second.length);
buffer.write(data.data(), region.second.length);
}
}
buffer.write(data.data(), region.second.length);
}
}
}
void memory_manager::deserialize_memory_state(utils::buffer_deserializer& buffer, const bool is_snapshot)
{
if (!is_snapshot)
{
for (const auto& reserved_region : this->reserved_regions_)
{
for (const auto& region : reserved_region.second.committed_regions)
{
this->unmap_memory(region.first, region.second.length);
}
}
}
if (!is_snapshot)
{
for (const auto& reserved_region : this->reserved_regions_)
{
for (const auto& region : reserved_region.second.committed_regions)
{
this->unmap_memory(region.first, region.second.length);
}
}
}
buffer.read_map(this->reserved_regions_);
buffer.read_map(this->reserved_regions_);
if (is_snapshot)
{
return;
}
if (is_snapshot)
{
return;
}
std::vector<uint8_t> data{};
std::vector<uint8_t> data{};
for (auto i = this->reserved_regions_.begin(); i != this->reserved_regions_.end();)
{
auto& reserved_region = i->second;
if (reserved_region.is_mmio)
{
i = this->reserved_regions_.erase(i);
continue;
}
for (auto i = this->reserved_regions_.begin(); i != this->reserved_regions_.end();)
{
auto& reserved_region = i->second;
if (reserved_region.is_mmio)
{
i = this->reserved_regions_.erase(i);
continue;
}
++i;
++i;
for (const auto& region : reserved_region.committed_regions)
{
data.resize(region.second.length);
for (const auto& region : reserved_region.committed_regions)
{
data.resize(region.second.length);
buffer.read(data.data(), region.second.length);
buffer.read(data.data(), region.second.length);
this->map_memory(region.first, region.second.length, region.second.pemissions);
this->write_memory(region.first, data.data(), region.second.length);
}
}
this->map_memory(region.first, region.second.length, region.second.pemissions);
this->write_memory(region.first, data.data(), region.second.length);
}
}
}
bool memory_manager::protect_memory(const uint64_t address, const size_t size, const memory_permission permissions,
memory_permission* old_permissions)
{
const auto entry = this->find_reserved_region(address);
if (entry == this->reserved_regions_.end())
{
return false;
}
const auto entry = this->find_reserved_region(address);
if (entry == this->reserved_regions_.end())
{
return false;
}
const auto end = address + size;
const auto region_end = entry->first + entry->second.length;
const auto end = address + size;
const auto region_end = entry->first + entry->second.length;
if (region_end < end)
{
throw std::runtime_error("Cross region protect not supported yet!");
}
if (region_end < end)
{
throw std::runtime_error("Cross region protect not supported yet!");
}
std::optional<memory_permission> old_first_permissions{};
std::optional<memory_permission> old_first_permissions{};
auto& committed_regions = entry->second.committed_regions;
split_regions(committed_regions, {address, end});
auto& committed_regions = entry->second.committed_regions;
split_regions(committed_regions, {address, end});
for (auto& sub_region : committed_regions)
{
if (sub_region.first >= end)
{
break;
}
for (auto& sub_region : committed_regions)
{
if (sub_region.first >= end)
{
break;
}
const auto sub_region_end = sub_region.first + sub_region.second.length;
if (sub_region.first >= address && sub_region_end <= end)
{
if (!old_first_permissions.has_value())
{
old_first_permissions = sub_region.second.pemissions;
}
const auto sub_region_end = sub_region.first + sub_region.second.length;
if (sub_region.first >= address && sub_region_end <= end)
{
if (!old_first_permissions.has_value())
{
old_first_permissions = sub_region.second.pemissions;
}
this->apply_memory_protection(sub_region.first, sub_region.second.length, permissions);
sub_region.second.pemissions = permissions;
}
}
this->apply_memory_protection(sub_region.first, sub_region.second.length, permissions);
sub_region.second.pemissions = permissions;
}
}
if (old_permissions)
{
*old_permissions = old_first_permissions.value_or(memory_permission::none);
}
if (old_permissions)
{
*old_permissions = old_first_permissions.value_or(memory_permission::none);
}
merge_regions(committed_regions);
return true;
merge_regions(committed_regions);
return true;
}
bool memory_manager::allocate_mmio(const uint64_t address, const size_t size, mmio_read_callback read_cb,
mmio_write_callback write_cb)
{
if (this->overlaps_reserved_region(address, size))
{
return false;
}
if (this->overlaps_reserved_region(address, size))
{
return false;
}
this->map_mmio(address, size, std::move(read_cb), std::move(write_cb));
this->map_mmio(address, size, std::move(read_cb), std::move(write_cb));
const auto entry = this->reserved_regions_.try_emplace(address,
reserved_region{
.length = size,
.is_mmio = true,
}).first;
const auto entry = this->reserved_regions_
.try_emplace(address,
reserved_region{
.length = size,
.is_mmio = true,
})
.first;
entry->second.committed_regions[address] = committed_region{size, memory_permission::read_write};
entry->second.committed_regions[address] = committed_region{size, memory_permission::read_write};
return true;
return true;
}
bool memory_manager::allocate_memory(const uint64_t address, const size_t size, const memory_permission permissions,
const bool reserve_only)
{
if (this->overlaps_reserved_region(address, size))
{
return false;
}
if (this->overlaps_reserved_region(address, size))
{
return false;
}
const auto entry = this->reserved_regions_.try_emplace(address, reserved_region{.length = size,}).first;
const auto entry = this->reserved_regions_
.try_emplace(address,
reserved_region{
.length = size,
})
.first;
if (!reserve_only)
{
this->map_memory(address, size, permissions);
entry->second.committed_regions[address] = committed_region{size, memory_permission::read_write};
}
if (!reserve_only)
{
this->map_memory(address, size, permissions);
entry->second.committed_regions[address] = committed_region{size, memory_permission::read_write};
}
return true;
return true;
}
bool memory_manager::commit_memory(const uint64_t address, const size_t size, const memory_permission permissions)
{
const auto entry = this->find_reserved_region(address);
if (entry == this->reserved_regions_.end())
{
return false;
}
const auto entry = this->find_reserved_region(address);
if (entry == this->reserved_regions_.end())
{
return false;
}
const auto end = address + size;
const auto region_end = entry->first + entry->second.length;
const auto end = address + size;
const auto region_end = entry->first + entry->second.length;
if (region_end < end)
{
throw std::runtime_error("Cross region commit not supported yet!");
}
if (region_end < end)
{
throw std::runtime_error("Cross region commit not supported yet!");
}
auto& committed_regions = entry->second.committed_regions;
split_regions(committed_regions, {address, end});
auto& committed_regions = entry->second.committed_regions;
split_regions(committed_regions, {address, end});
uint64_t last_region_start{};
const committed_region* last_region{nullptr};
uint64_t last_region_start{};
const committed_region* last_region{nullptr};
for (auto& sub_region : committed_regions)
{
if (sub_region.first >= end)
{
break;
}
for (auto& sub_region : committed_regions)
{
if (sub_region.first >= end)
{
break;
}
const auto sub_region_end = sub_region.first + sub_region.second.length;
if (sub_region.first >= address && sub_region_end <= end)
{
const auto map_start = last_region ? (last_region_start + last_region->length) : address;
const auto map_length = sub_region.first - map_start;
const auto sub_region_end = sub_region.first + sub_region.second.length;
if (sub_region.first >= address && sub_region_end <= end)
{
const auto map_start = last_region ? (last_region_start + last_region->length) : address;
const auto map_length = sub_region.first - map_start;
if (map_length > 0)
{
this->map_memory(map_start, map_length, permissions);
committed_regions[map_start] = committed_region{map_length, permissions};
}
if (map_length > 0)
{
this->map_memory(map_start, map_length, permissions);
committed_regions[map_start] = committed_region{map_length, permissions};
}
last_region_start = sub_region.first;
last_region = &sub_region.second;
}
}
last_region_start = sub_region.first;
last_region = &sub_region.second;
}
}
if (!last_region || (last_region_start + last_region->length) < end)
{
const auto map_start = last_region ? (last_region_start + last_region->length) : address;
const auto map_length = end - map_start;
if (!last_region || (last_region_start + last_region->length) < end)
{
const auto map_start = last_region ? (last_region_start + last_region->length) : address;
const auto map_length = end - map_start;
this->map_memory(map_start, map_length, permissions);
committed_regions[map_start] = committed_region{map_length, permissions};
}
this->map_memory(map_start, map_length, permissions);
committed_regions[map_start] = committed_region{map_length, permissions};
}
merge_regions(committed_regions);
return true;
merge_regions(committed_regions);
return true;
}
bool memory_manager::decommit_memory(const uint64_t address, const size_t size)
{
const auto entry = this->find_reserved_region(address);
if (entry == this->reserved_regions_.end())
{
return false;
}
const auto entry = this->find_reserved_region(address);
if (entry == this->reserved_regions_.end())
{
return false;
}
if (entry->second.is_mmio)
{
throw std::runtime_error("Not allowed to decommit MMIO!");
}
if (entry->second.is_mmio)
{
throw std::runtime_error("Not allowed to decommit MMIO!");
}
const auto end = address + size;
const auto region_end = entry->first + entry->second.length;
const auto end = address + size;
const auto region_end = entry->first + entry->second.length;
if (region_end < end)
{
throw std::runtime_error("Cross region decommit not supported yet!");
}
if (region_end < end)
{
throw std::runtime_error("Cross region decommit not supported yet!");
}
auto& committed_regions = entry->second.committed_regions;
auto& committed_regions = entry->second.committed_regions;
split_regions(committed_regions, {address, end});
split_regions(committed_regions, {address, end});
for (auto i = committed_regions.begin(); i != committed_regions.end();)
{
if (i->first >= end)
{
break;
}
for (auto i = committed_regions.begin(); i != committed_regions.end();)
{
if (i->first >= end)
{
break;
}
const auto sub_region_end = i->first + i->second.length;
if (i->first >= address && sub_region_end <= end)
{
this->unmap_memory(i->first, i->second.length);
i = committed_regions.erase(i);
continue;
}
const auto sub_region_end = i->first + i->second.length;
if (i->first >= address && sub_region_end <= end)
{
this->unmap_memory(i->first, i->second.length);
i = committed_regions.erase(i);
continue;
}
++i;
}
++i;
}
return true;
return true;
}
bool memory_manager::release_memory(const uint64_t address, size_t size)
{
const auto entry = this->reserved_regions_.find(address);
if (entry == this->reserved_regions_.end())
{
return false;
}
const auto entry = this->reserved_regions_.find(address);
if (entry == this->reserved_regions_.end())
{
return false;
}
if (!size)
{
size = entry->second.length;
}
if (!size)
{
size = entry->second.length;
}
if (size > entry->second.length)
{
throw std::runtime_error("Cross region release not supported yet!");
}
if (size > entry->second.length)
{
throw std::runtime_error("Cross region release not supported yet!");
}
const auto end = address + size;
auto& committed_regions = entry->second.committed_regions;
const auto end = address + size;
auto& committed_regions = entry->second.committed_regions;
split_regions(committed_regions, {end});
split_regions(committed_regions, {end});
for (auto i = committed_regions.begin(); i != committed_regions.end();)
{
if (i->first >= end)
{
break;
}
for (auto i = committed_regions.begin(); i != committed_regions.end();)
{
if (i->first >= end)
{
break;
}
const auto sub_region_end = i->first + i->second.length;
if (i->first >= address && sub_region_end <= end)
{
this->unmap_memory(i->first, i->second.length);
i = committed_regions.erase(i);
}
else
{
++i;
}
}
const auto sub_region_end = i->first + i->second.length;
if (i->first >= address && sub_region_end <= end)
{
this->unmap_memory(i->first, i->second.length);
i = committed_regions.erase(i);
}
else
{
++i;
}
}
entry->second.length -= size;
if (entry->second.length > 0)
{
this->reserved_regions_[address + size] = std::move(entry->second);
}
entry->second.length -= size;
if (entry->second.length > 0)
{
this->reserved_regions_[address + size] = std::move(entry->second);
}
this->reserved_regions_.erase(entry);
return true;
this->reserved_regions_.erase(entry);
return true;
}
uint64_t memory_manager::find_free_allocation_base(const size_t size, const uint64_t start) const
{
uint64_t start_address =
std::max(MIN_ALLOCATION_ADDRESS, start ? start : 0x100000000ULL);
uint64_t start_address = std::max(MIN_ALLOCATION_ADDRESS, start ? start : 0x100000000ULL);
for (const auto& region : this->reserved_regions_)
{
const auto region_end = region.first + region.second.length;
if (region_end < start_address)
{
continue;
}
for (const auto& region : this->reserved_regions_)
{
const auto region_end = region.first + region.second.length;
if (region_end < start_address)
{
continue;
}
if (!regions_with_length_intersect(start_address, size, region.first, region.second.length))
{
return start_address;
}
if (!regions_with_length_intersect(start_address, size, region.first, region.second.length))
{
return start_address;
}
start_address = page_align_up(region_end);
}
start_address = page_align_up(region_end);
}
if (start_address + size <= MAX_ALLOCATION_ADDRESS)
{
return start_address;
}
if (start_address + size <= MAX_ALLOCATION_ADDRESS)
{
return start_address;
}
return 0;
return 0;
}
region_info memory_manager::get_region_info(const uint64_t address)
{
region_info result{};
result.start = MIN_ALLOCATION_ADDRESS;
result.length = MAX_ALLOCATION_ADDRESS - result.start;
result.permissions = memory_permission::none;
result.allocation_base = {};
result.allocation_length = result.length;
result.is_committed = false;
result.is_reserved = false;
region_info result{};
result.start = MIN_ALLOCATION_ADDRESS;
result.length = MAX_ALLOCATION_ADDRESS - result.start;
result.permissions = memory_permission::none;
result.allocation_base = {};
result.allocation_length = result.length;
result.is_committed = false;
result.is_reserved = false;
if (this->reserved_regions_.empty())
{
return result;
}
if (this->reserved_regions_.empty())
{
return result;
}
auto upper_bound = this->reserved_regions_.upper_bound(address);
if (upper_bound == this->reserved_regions_.begin())
{
result.length = upper_bound->first - result.start;
return result;
}
auto upper_bound = this->reserved_regions_.upper_bound(address);
if (upper_bound == this->reserved_regions_.begin())
{
result.length = upper_bound->first - result.start;
return result;
}
const auto entry = --upper_bound;
const auto lower_end = entry->first + entry->second.length;
if (lower_end <= address)
{
result.start = lower_end;
result.length = MAX_ALLOCATION_ADDRESS - result.start;
return result;
}
const auto entry = --upper_bound;
const auto lower_end = entry->first + entry->second.length;
if (lower_end <= address)
{
result.start = lower_end;
result.length = MAX_ALLOCATION_ADDRESS - result.start;
return result;
}
// We have a reserved region
const auto& reserved_region = entry->second;
const auto& committed_regions = reserved_region.committed_regions;
// We have a reserved region
const auto& reserved_region = entry->second;
const auto& committed_regions = reserved_region.committed_regions;
result.is_reserved = true;
result.allocation_base = entry->first;
result.allocation_length = reserved_region.length;
result.start = result.allocation_base;
result.length = result.allocation_length;
result.is_reserved = true;
result.allocation_base = entry->first;
result.allocation_length = reserved_region.length;
result.start = result.allocation_base;
result.length = result.allocation_length;
if (committed_regions.empty())
{
return result;
}
if (committed_regions.empty())
{
return result;
}
auto committed_bound = committed_regions.upper_bound(address);
if (committed_bound == committed_regions.begin())
{
result.length = committed_bound->first - result.start;
return result;
}
auto committed_bound = committed_regions.upper_bound(address);
if (committed_bound == committed_regions.begin())
{
result.length = committed_bound->first - result.start;
return result;
}
const auto committed_entry = --committed_bound;
const auto committed_lower_end = committed_entry->first + committed_entry->second.length;
if (committed_lower_end <= address)
{
result.start = committed_lower_end;
result.length = lower_end - result.start;
return result;
}
const auto committed_entry = --committed_bound;
const auto committed_lower_end = committed_entry->first + committed_entry->second.length;
if (committed_lower_end <= address)
{
result.start = committed_lower_end;
result.length = lower_end - result.start;
return result;
}
result.is_committed = true;
result.start = committed_entry->first;
result.length = committed_entry->second.length;
result.permissions = committed_entry->second.pemissions;
result.is_committed = true;
result.start = committed_entry->first;
result.length = committed_entry->second.length;
result.permissions = committed_entry->second.pemissions;
return result;
return result;
}
memory_manager::reserved_region_map::iterator memory_manager::find_reserved_region(const uint64_t address)
{
if (this->reserved_regions_.empty())
{
return this->reserved_regions_.end();
}
if (this->reserved_regions_.empty())
{
return this->reserved_regions_.end();
}
auto upper_bound = this->reserved_regions_.upper_bound(address);
if (upper_bound == this->reserved_regions_.begin())
{
return this->reserved_regions_.end();
}
auto upper_bound = this->reserved_regions_.upper_bound(address);
if (upper_bound == this->reserved_regions_.begin())
{
return this->reserved_regions_.end();
}
const auto entry = --upper_bound;
if (entry->first + entry->second.length <= address)
{
return this->reserved_regions_.end();
}
const auto entry = --upper_bound;
if (entry->first + entry->second.length <= address)
{
return this->reserved_regions_.end();
}
return entry;
return entry;
}
bool memory_manager::overlaps_reserved_region(const uint64_t address, const size_t size) const
{
for (const auto& region : this->reserved_regions_)
{
if (regions_with_length_intersect(address, size, region.first, region.second.length))
{
return true;
}
}
for (const auto& region : this->reserved_regions_)
{
if (regions_with_length_intersect(address, size, region.first, region.second.length))
{
return true;
}
}
return false;
return false;
}

View File

@@ -7,10 +7,10 @@
struct region_info : basic_memory_region
{
uint64_t allocation_base{};
size_t allocation_length{};
bool is_reserved{};
bool is_committed{};
uint64_t allocation_base{};
size_t allocation_length{};
bool is_reserved{};
bool is_committed{};
};
using mmio_read_callback = std::function<uint64_t(uint64_t addr, size_t size)>;
@@ -18,115 +18,114 @@ using mmio_write_callback = std::function<void(uint64_t addr, size_t size, uint6
class memory_manager
{
public:
struct committed_region
{
size_t length{};
memory_permission pemissions{};
};
public:
struct committed_region
{
size_t length{};
memory_permission pemissions{};
};
using committed_region_map = std::map<uint64_t, committed_region>;
using committed_region_map = std::map<uint64_t, committed_region>;
struct reserved_region
{
size_t length{};
committed_region_map committed_regions{};
bool is_mmio{false};
};
struct reserved_region
{
size_t length{};
committed_region_map committed_regions{};
bool is_mmio{false};
};
virtual ~memory_manager() = default;
virtual ~memory_manager() = default;
template <typename T>
T read_memory(const uint64_t address) const
{
T value{};
this->read_memory(address, &value, sizeof(value));
return value;
}
template <typename T>
T read_memory(const uint64_t address) const
{
T value{};
this->read_memory(address, &value, sizeof(value));
return value;
}
template <typename T>
T read_memory(const void* address) const
{
return this->read_memory<T>(reinterpret_cast<uint64_t>(address));
}
template <typename T>
T read_memory(const void* address) const
{
return this->read_memory<T>(reinterpret_cast<uint64_t>(address));
}
std::vector<std::byte> read_memory(const uint64_t address, const size_t size) const
{
std::vector<std::byte> data{};
data.resize(size);
std::vector<std::byte> read_memory(const uint64_t address, const size_t size) const
{
std::vector<std::byte> data{};
data.resize(size);
this->read_memory(address, data.data(), data.size());
this->read_memory(address, data.data(), data.size());
return data;
}
return data;
}
std::vector<std::byte> read_memory(const void* address, const size_t size) const
{
return this->read_memory(reinterpret_cast<uint64_t>(address), size);
}
std::vector<std::byte> read_memory(const void* address, const size_t size) const
{
return this->read_memory(reinterpret_cast<uint64_t>(address), size);
}
template <typename T>
void write_memory(const uint64_t address, const T& value)
{
this->write_memory(address, &value, sizeof(value));
}
template <typename T>
void write_memory(const uint64_t address, const T& value)
{
this->write_memory(address, &value, sizeof(value));
}
template <typename T>
void write_memory(void* address, const T& value)
{
this->write_memory(reinterpret_cast<uint64_t>(address), &value, sizeof(value));
}
template <typename T>
void write_memory(void* address, const T& value)
{
this->write_memory(reinterpret_cast<uint64_t>(address), &value, sizeof(value));
}
void write_memory(void* address, const void* data, const size_t size)
{
this->write_memory(reinterpret_cast<uint64_t>(address), data, size);
}
void write_memory(void* address, const void* data, const size_t size)
{
this->write_memory(reinterpret_cast<uint64_t>(address), data, size);
}
virtual void read_memory(uint64_t address, void* data, size_t size) const = 0;
virtual bool try_read_memory(uint64_t address, void* data, size_t size) const = 0;
virtual void write_memory(uint64_t address, const void* data, size_t size) = 0;
virtual void read_memory(uint64_t address, void* data, size_t size) const = 0;
virtual bool try_read_memory(uint64_t address, void* data, size_t size) const = 0;
virtual void write_memory(uint64_t address, const void* data, size_t size) = 0;
bool protect_memory(uint64_t address, size_t size, memory_permission permissions,
memory_permission* old_permissions = nullptr);
bool protect_memory(uint64_t address, size_t size, memory_permission permissions,
memory_permission* old_permissions = nullptr);
bool allocate_mmio(uint64_t address, size_t size, mmio_read_callback read_cb, mmio_write_callback write_cb);
bool allocate_memory(uint64_t address, size_t size, memory_permission permissions,
bool reserve_only = false);
bool allocate_mmio(uint64_t address, size_t size, mmio_read_callback read_cb, mmio_write_callback write_cb);
bool allocate_memory(uint64_t address, size_t size, memory_permission permissions, bool reserve_only = false);
bool commit_memory(uint64_t address, size_t size, memory_permission permissions);
bool decommit_memory(uint64_t address, size_t size);
bool commit_memory(uint64_t address, size_t size, memory_permission permissions);
bool decommit_memory(uint64_t address, size_t size);
bool release_memory(uint64_t address, size_t size);
bool release_memory(uint64_t address, size_t size);
uint64_t find_free_allocation_base(size_t size, uint64_t start = 0) const;
uint64_t find_free_allocation_base(size_t size, uint64_t start = 0) const;
region_info get_region_info(uint64_t address);
region_info get_region_info(uint64_t address);
uint64_t allocate_memory(const size_t size, const memory_permission permissions, const bool reserve_only = false)
{
const auto allocation_base = this->find_free_allocation_base(size);
if (!allocate_memory(allocation_base, size, permissions, reserve_only))
{
return 0;
}
uint64_t allocate_memory(const size_t size, const memory_permission permissions, const bool reserve_only = false)
{
const auto allocation_base = this->find_free_allocation_base(size);
if (!allocate_memory(allocation_base, size, permissions, reserve_only))
{
return 0;
}
return allocation_base;
}
return allocation_base;
}
private:
using reserved_region_map = std::map<uint64_t, reserved_region>;
reserved_region_map reserved_regions_{};
private:
using reserved_region_map = std::map<uint64_t, reserved_region>;
reserved_region_map reserved_regions_{};
reserved_region_map::iterator find_reserved_region(uint64_t address);
bool overlaps_reserved_region(uint64_t address, size_t size) const;
reserved_region_map::iterator find_reserved_region(uint64_t address);
bool overlaps_reserved_region(uint64_t address, size_t size) const;
virtual void map_mmio(uint64_t address, size_t size, mmio_read_callback read_cb, mmio_write_callback write_cb) = 0;
virtual void map_memory(uint64_t address, size_t size, memory_permission permissions) = 0;
virtual void unmap_memory(uint64_t address, size_t size) = 0;
virtual void map_mmio(uint64_t address, size_t size, mmio_read_callback read_cb, mmio_write_callback write_cb) = 0;
virtual void map_memory(uint64_t address, size_t size, memory_permission permissions) = 0;
virtual void unmap_memory(uint64_t address, size_t size) = 0;
virtual void apply_memory_protection(uint64_t address, size_t size, memory_permission permissions) = 0;
virtual void apply_memory_protection(uint64_t address, size_t size, memory_permission permissions) = 0;
protected:
void serialize_memory_state(utils::buffer_serializer& buffer, bool is_snapshot) const;
void deserialize_memory_state(utils::buffer_deserializer& buffer, bool is_snapshot);
protected:
void serialize_memory_state(utils::buffer_serializer& buffer, bool is_snapshot) const;
void deserialize_memory_state(utils::buffer_deserializer& buffer, bool is_snapshot);
};

View File

@@ -3,62 +3,52 @@
enum class memory_permission : uint8_t
{
none = 0,
read = 1 << 0,
write = 1 << 1,
exec = 1 << 2,
read_write = read | write,
all = read | write | exec
none = 0,
read = 1 << 0,
write = 1 << 1,
exec = 1 << 2,
read_write = read | write,
all = read | write | exec
};
/*****************************************************************************
*
****************************************************************************/
inline constexpr memory_permission
operator&(const memory_permission x, const memory_permission y)
inline constexpr memory_permission operator&(const memory_permission x, const memory_permission y)
{
return static_cast<memory_permission>
(static_cast<uint8_t>(x) & static_cast<uint8_t>(y));
return static_cast<memory_permission>(static_cast<uint8_t>(x) & static_cast<uint8_t>(y));
}
inline constexpr memory_permission
operator|(const memory_permission x, const memory_permission y)
inline constexpr memory_permission operator|(const memory_permission x, const memory_permission y)
{
return static_cast<memory_permission>
(static_cast<uint8_t>(x) | static_cast<uint8_t>(y));
return static_cast<memory_permission>(static_cast<uint8_t>(x) | static_cast<uint8_t>(y));
}
inline constexpr memory_permission
operator^(const memory_permission x, const memory_permission y)
inline constexpr memory_permission operator^(const memory_permission x, const memory_permission y)
{
return static_cast<memory_permission>
(static_cast<uint8_t>(x) ^ static_cast<uint8_t>(y));
return static_cast<memory_permission>(static_cast<uint8_t>(x) ^ static_cast<uint8_t>(y));
}
inline constexpr memory_permission
operator~(memory_permission x)
inline constexpr memory_permission operator~(memory_permission x)
{
return static_cast<memory_permission>(~static_cast<uint8_t>(x));
return static_cast<memory_permission>(~static_cast<uint8_t>(x));
}
inline memory_permission&
operator&=(memory_permission& x, const memory_permission y)
inline memory_permission& operator&=(memory_permission& x, const memory_permission y)
{
x = x & y;
return x;
x = x & y;
return x;
}
inline memory_permission&
operator|=(memory_permission& x, const memory_permission y)
inline memory_permission& operator|=(memory_permission& x, const memory_permission y)
{
x = x | y;
return x;
x = x | y;
return x;
}
inline memory_permission&
operator^=(memory_permission& x, const memory_permission y)
inline memory_permission& operator^=(memory_permission& x, const memory_permission y)
{
x = x ^ y;
return x;
x = x ^ y;
return x;
}

View File

@@ -4,12 +4,12 @@
struct basic_memory_region
{
uint64_t start{};
size_t length{};
memory_permission permissions{};
uint64_t start{};
size_t length{};
memory_permission permissions{};
};
struct memory_region : basic_memory_region
{
bool committed{};
bool committed{};
};

View File

@@ -3,52 +3,52 @@
class scoped_hook
{
public:
scoped_hook() = default;
public:
scoped_hook() = default;
scoped_hook(emulator& emu, emulator_hook* hook)
: emu_(&emu)
, hook_(hook)
{
}
scoped_hook(emulator& emu, emulator_hook* hook)
: emu_(&emu),
hook_(hook)
{
}
~scoped_hook()
{
this->remove();
}
~scoped_hook()
{
this->remove();
}
scoped_hook(const scoped_hook&) = delete;
scoped_hook& operator=(const scoped_hook&) = delete;
scoped_hook(const scoped_hook&) = delete;
scoped_hook& operator=(const scoped_hook&) = delete;
scoped_hook(scoped_hook&& obj) noexcept
{
this->operator=(std::move(obj));
}
scoped_hook(scoped_hook&& obj) noexcept
{
this->operator=(std::move(obj));
}
scoped_hook& operator=(scoped_hook&& obj) noexcept
{
if (this != &obj)
{
this->remove();
this->emu_ = obj.emu_;
this->hook_ = obj.hook_;
scoped_hook& operator=(scoped_hook&& obj) noexcept
{
if (this != &obj)
{
this->remove();
this->emu_ = obj.emu_;
this->hook_ = obj.hook_;
obj.hook_ = {};
}
obj.hook_ = {};
}
return *this;
}
return *this;
}
void remove()
{
if (this->hook_)
{
this->emu_->delete_hook(this->hook_);
this->hook_ = {};
}
}
void remove()
{
if (this->hook_)
{
this->emu_->delete_hook(this->hook_);
this->hook_ = {};
}
}
private:
emulator* emu_{};
emulator_hook* hook_{};
private:
emulator* emu_{};
emulator_hook* hook_{};
};

View File

@@ -11,488 +11,483 @@
namespace utils
{
class buffer_serializer;
class buffer_deserializer;
class buffer_serializer;
class buffer_deserializer;
template <typename T>
concept Serializable = requires(T a, const T ac, buffer_serializer& serializer, buffer_deserializer& deserializer)
{
{ ac.serialize(serializer) } -> std::same_as<void>;
{ a.deserialize(deserializer) } -> std::same_as<void>;
};
template <typename T>
concept Serializable = requires(T a, const T ac, buffer_serializer& serializer, buffer_deserializer& deserializer) {
{ ac.serialize(serializer) } -> std::same_as<void>;
{ a.deserialize(deserializer) } -> std::same_as<void>;
};
/* Use concept instead, to prevent overhead of virtual function calls
struct serializable
{
virtual ~serializable() = default;
virtual void serialize(buffer_serializer& buffer) const = 0;
virtual void deserialize(buffer_deserializer& buffer) = 0;
};
*/
/* Use concept instead, to prevent overhead of virtual function calls
struct serializable
{
virtual ~serializable() = default;
virtual void serialize(buffer_serializer& buffer) const = 0;
virtual void deserialize(buffer_deserializer& buffer) = 0;
};
*/
namespace detail
{
template <typename, typename = void>
struct has_serialize_function : std::false_type
{
};
namespace detail
{
template <typename, typename = void>
struct has_serialize_function : std::false_type
{
};
template <typename T>
struct has_serialize_function<T, std::void_t<decltype(serialize(std::declval<buffer_serializer&>(),
std::declval<const std::remove_cvref_t<T>&>())
)>>
: std::true_type
{
};
template <typename T>
struct has_serialize_function<T,
std::void_t<decltype(serialize(std::declval<buffer_serializer&>(),
std::declval<const std::remove_cvref_t<T>&>()))>>
: std::true_type
{
};
template <typename, typename = void>
struct has_deserialize_function : std::false_type
{
};
template <typename, typename = void>
struct has_deserialize_function : std::false_type
{
};
template <typename T>
struct has_deserialize_function<T, std::void_t<decltype(deserialize(
std::declval<buffer_deserializer&>(),
std::declval<std::remove_cvref_t<T>&>()))>>
: std::true_type
{
};
template <typename T>
struct has_deserialize_function<T, std::void_t<decltype(deserialize(std::declval<buffer_deserializer&>(),
std::declval<std::remove_cvref_t<T>&>()))>>
: std::true_type
{
};
template <typename T>
struct has_deserializer_constructor
: std::bool_constant<std::is_constructible_v<T, buffer_deserializer&>>
{
};
}
template <typename T>
struct has_deserializer_constructor : std::bool_constant<std::is_constructible_v<T, buffer_deserializer&>>
{
};
}
class buffer_deserializer
{
public:
template <typename T>
buffer_deserializer(const std::span<T> buffer, bool no_debugging = false)
: no_debugging_(no_debugging)
, buffer_(reinterpret_cast<const std::byte*>(buffer.data()), buffer.size() * sizeof(T))
{
static_assert(std::is_trivially_copyable_v<T>, "Type must be trivially copyable");
}
class buffer_deserializer
{
public:
template <typename T>
buffer_deserializer(const std::span<T> buffer, bool no_debugging = false)
: no_debugging_(no_debugging),
buffer_(reinterpret_cast<const std::byte*>(buffer.data()), buffer.size() * sizeof(T))
{
static_assert(std::is_trivially_copyable_v<T>, "Type must be trivially copyable");
}
template <typename T>
buffer_deserializer(const std::vector<T>& buffer, bool no_debugging = false)
: buffer_deserializer(std::span(buffer), no_debugging)
{
}
template <typename T>
buffer_deserializer(const std::vector<T>& buffer, bool no_debugging = false)
: buffer_deserializer(std::span(buffer), no_debugging)
{
}
std::span<const std::byte> read_data(const size_t length)
{
std::span<const std::byte> read_data(const size_t length)
{
#ifndef NDEBUG
const uint64_t real_old_size = this->offset_;
(void)real_old_size;
const uint64_t real_old_size = this->offset_;
(void)real_old_size;
#endif
if (this->offset_ + length > this->buffer_.size())
{
throw std::runtime_error("Out of bounds read from byte buffer");
}
if (this->offset_ + length > this->buffer_.size())
{
throw std::runtime_error("Out of bounds read from byte buffer");
}
const std::span result(this->buffer_.data() + this->offset_, length);
this->offset_ += length;
const std::span result(this->buffer_.data() + this->offset_, length);
this->offset_ += length;
(void)this->no_debugging_;
(void)this->no_debugging_;
#ifndef NDEBUG
if (!this->no_debugging_)
{
uint64_t old_size{};
if (this->offset_ + sizeof(old_size) > this->buffer_.size())
{
throw std::runtime_error("Out of bounds read from byte buffer");
}
if (!this->no_debugging_)
{
uint64_t old_size{};
if (this->offset_ + sizeof(old_size) > this->buffer_.size())
{
throw std::runtime_error("Out of bounds read from byte buffer");
}
memcpy(&old_size, this->buffer_.data() + this->offset_, sizeof(old_size));
if (old_size != real_old_size)
{
throw std::runtime_error("Reading from serialized buffer mismatches written data!");
}
memcpy(&old_size, this->buffer_.data() + this->offset_, sizeof(old_size));
if (old_size != real_old_size)
{
throw std::runtime_error("Reading from serialized buffer mismatches written data!");
}
this->offset_ += sizeof(old_size);
}
this->offset_ += sizeof(old_size);
}
#endif
return result;
}
return result;
}
void read(void* data, const size_t length)
{
const auto span = this->read_data(length);
memcpy(data, span.data(), length);
}
void read(void* data, const size_t length)
{
const auto span = this->read_data(length);
memcpy(data, span.data(), length);
}
template <typename T>
void read(T& object)
{
constexpr auto is_trivially_copyable = std::is_trivially_copyable_v<T>;
template <typename T>
void read(T& object)
{
constexpr auto is_trivially_copyable = std::is_trivially_copyable_v<T>;
if constexpr (Serializable<T>)
{
object.deserialize(*this);
}
else if constexpr (detail::has_deserialize_function<T>::value)
{
deserialize(*this, object);
}
else if constexpr (is_trivially_copyable)
{
union
{
T* type_{};
void* void_;
} pointers;
if constexpr (Serializable<T>)
{
object.deserialize(*this);
}
else if constexpr (detail::has_deserialize_function<T>::value)
{
deserialize(*this, object);
}
else if constexpr (is_trivially_copyable)
{
union
{
T* type_{};
void* void_;
} pointers;
pointers.type_ = &object;
pointers.type_ = &object;
this->read(pointers.void_, sizeof(object));
}
else
{
static_assert(!is_trivially_copyable, "Key must be trivially copyable or implement serializable!");
std::abort();
}
}
this->read(pointers.void_, sizeof(object));
}
else
{
static_assert(!is_trivially_copyable, "Key must be trivially copyable or implement serializable!");
std::abort();
}
}
template <typename T>
T read()
{
auto object = this->construct_object<T>();
this->read(object);
return object;
}
template <typename T>
T read()
{
auto object = this->construct_object<T>();
this->read(object);
return object;
}
template <typename T>
void read_optional(std::optional<T>& val)
{
if (this->read<bool>())
{
val.emplace(this->read<T>());
}
else
{
val = std::nullopt;
}
}
template <typename T>
void read_optional(std::optional<T>& val)
{
if (this->read<bool>())
{
val.emplace(this->read<T>());
}
else
{
val = std::nullopt;
}
}
template <typename T, typename F>
requires(std::is_invocable_r_v<T, F>)
void read_optional(std::optional<T>& val, const F& factory)
{
if (this->read<bool>())
{
val.emplace(factory());
this->read<T>(*val);
}
else
{
val = {};
}
}
template <typename T, typename F>
requires(std::is_invocable_r_v<T, F>)
void read_optional(std::optional<T>& val, const F& factory)
{
if (this->read<bool>())
{
val.emplace(factory());
this->read<T>(*val);
}
else
{
val = {};
}
}
template <typename T>
void read_vector(std::vector<T>& result)
{
const auto size = this->read<uint64_t>();
result.clear();
result.reserve(size);
template <typename T>
void read_vector(std::vector<T>& result)
{
const auto size = this->read<uint64_t>();
result.clear();
result.reserve(size);
for (uint64_t i = 0; i < size; ++i)
{
result.emplace_back(this->read<T>());
}
}
for (uint64_t i = 0; i < size; ++i)
{
result.emplace_back(this->read<T>());
}
}
template <typename T>
std::vector<T> read_vector()
{
std::vector<T> result{};
this->read_vector(result);
return result;
}
template <typename T>
std::vector<T> read_vector()
{
std::vector<T> result{};
this->read_vector(result);
return result;
}
template <typename Map>
void read_map(Map& map)
{
using key_type = typename Map::key_type;
using value_type = typename Map::mapped_type;
template <typename Map>
void read_map(Map& map)
{
using key_type = typename Map::key_type;
using value_type = typename Map::mapped_type;
map.clear();
map.clear();
const auto size = this->read<uint64_t>();
const auto size = this->read<uint64_t>();
for (uint64_t i = 0; i < size; ++i)
{
auto key = this->read<key_type>();
auto value = this->read<value_type>();
for (uint64_t i = 0; i < size; ++i)
{
auto key = this->read<key_type>();
auto value = this->read<value_type>();
map.emplace(std::move(key), std::move(value));
}
}
map.emplace(std::move(key), std::move(value));
}
}
template <typename Map>
Map read_map()
{
Map map{};
this->read_map(map);
return map;
}
template <typename Map>
Map read_map()
{
Map map{};
this->read_map(map);
return map;
}
template <typename T = char>
void read_string(std::basic_string<T>& result)
{
const auto size = this->read<uint64_t>();
template <typename T = char>
void read_string(std::basic_string<T>& result)
{
const auto size = this->read<uint64_t>();
result.clear();
result.reserve(size);
result.clear();
result.reserve(size);
for (uint64_t i = 0; i < size; ++i)
{
result.push_back(this->read<T>());
}
}
for (uint64_t i = 0; i < size; ++i)
{
result.push_back(this->read<T>());
}
}
template <typename T= char>
std::basic_string<T> read_string()
{
std::basic_string<T> result{};
this->read_string(result);
return result;
}
template <typename T = char>
std::basic_string<T> read_string()
{
std::basic_string<T> result{};
this->read_string(result);
return result;
}
size_t get_remaining_size() const
{
return this->buffer_.size() - offset_;
}
size_t get_remaining_size() const
{
return this->buffer_.size() - offset_;
}
std::span<const std::byte> get_remaining_data()
{
return this->read_data(this->get_remaining_size());
}
std::span<const std::byte> get_remaining_data()
{
return this->read_data(this->get_remaining_size());
}
size_t get_offset() const
{
return this->offset_;
}
size_t get_offset() const
{
return this->offset_;
}
template <typename T, typename F>
requires(std::is_invocable_r_v<T, F>)
void register_factory(F factory)
{
this->factories_[std::type_index(typeid(T))] = [f = std::move(factory)]() -> T* {
return new T(f());
};
}
template <typename T, typename F>
requires(std::is_invocable_r_v<T, F>)
void register_factory(F factory)
{
this->factories_[std::type_index(typeid(T))] = [f = std::move(factory)]() -> T* { return new T(f()); };
}
private:
bool no_debugging_{false};
size_t offset_{0};
std::span<const std::byte> buffer_{};
std::unordered_map<std::type_index, std::function<void*()>> factories_{};
private:
bool no_debugging_{false};
size_t offset_{0};
std::span<const std::byte> buffer_{};
std::unordered_map<std::type_index, std::function<void*()>> factories_{};
template <typename T>
T construct_object()
{
if constexpr (detail::has_deserializer_constructor<T>::value)
{
return T(*this);
}
else if constexpr (std::is_default_constructible_v<T>)
{
return {};
}
else
{
const auto factory = this->factories_.find(std::type_index(typeid(T)));
if (factory == this->factories_.end())
{
throw std::runtime_error(
"Object construction failed. Missing factory for type: " + std::string(typeid(T).name()));
}
template <typename T>
T construct_object()
{
if constexpr (detail::has_deserializer_constructor<T>::value)
{
return T(*this);
}
else if constexpr (std::is_default_constructible_v<T>)
{
return {};
}
else
{
const auto factory = this->factories_.find(std::type_index(typeid(T)));
if (factory == this->factories_.end())
{
throw std::runtime_error("Object construction failed. Missing factory for type: " +
std::string(typeid(T).name()));
}
auto* object = static_cast<T*>(factory->second());
auto obj = std::move(*object);
delete object;
auto* object = static_cast<T*>(factory->second());
auto obj = std::move(*object);
delete object;
return obj;
}
}
};
return obj;
}
}
};
class buffer_serializer
{
public:
buffer_serializer() = default;
class buffer_serializer
{
public:
buffer_serializer() = default;
void write(const void* buffer, const size_t length)
{
void write(const void* buffer, const size_t length)
{
#ifndef NDEBUG
const uint64_t old_size = this->buffer_.size();
const uint64_t old_size = this->buffer_.size();
#endif
const auto* byte_buffer = static_cast<const std::byte*>(buffer);
this->buffer_.insert(this->buffer_.end(), byte_buffer, byte_buffer + length);
const auto* byte_buffer = static_cast<const std::byte*>(buffer);
this->buffer_.insert(this->buffer_.end(), byte_buffer, byte_buffer + length);
#ifndef NDEBUG
const auto* security_buffer = reinterpret_cast<const std::byte*>(&old_size);
this->buffer_.insert(this->buffer_.end(), security_buffer, security_buffer + sizeof(old_size));
const auto* security_buffer = reinterpret_cast<const std::byte*>(&old_size);
this->buffer_.insert(this->buffer_.end(), security_buffer, security_buffer + sizeof(old_size));
#endif
}
}
void write(const buffer_serializer& object)
{
const auto& buffer = object.get_buffer();
this->write(buffer.data(), buffer.size());
}
void write(const buffer_serializer& object)
{
const auto& buffer = object.get_buffer();
this->write(buffer.data(), buffer.size());
}
template <typename T>
void write(const T& object)
{
constexpr auto is_trivially_copyable = std::is_trivially_copyable_v<T>;
template <typename T>
void write(const T& object)
{
constexpr auto is_trivially_copyable = std::is_trivially_copyable_v<T>;
if constexpr (Serializable<T>)
{
object.serialize(*this);
}
else if constexpr (detail::has_serialize_function<T>::value)
{
serialize(*this, object);
}
else if constexpr (is_trivially_copyable)
{
union
{
const T* type_{};
const void* void_;
} pointers;
if constexpr (Serializable<T>)
{
object.serialize(*this);
}
else if constexpr (detail::has_serialize_function<T>::value)
{
serialize(*this, object);
}
else if constexpr (is_trivially_copyable)
{
union
{
const T* type_{};
const void* void_;
} pointers;
pointers.type_ = &object;
pointers.type_ = &object;
this->write(pointers.void_, sizeof(object));
}
else
{
static_assert(!is_trivially_copyable, "Key must be trivially copyable or implement serializable!");
std::abort();
}
}
this->write(pointers.void_, sizeof(object));
}
else
{
static_assert(!is_trivially_copyable, "Key must be trivially copyable or implement serializable!");
std::abort();
}
}
template <typename T>
void write_optional(const std::optional<T>& val)
{
this->write(val.has_value());
template <typename T>
void write_optional(const std::optional<T>& val)
{
this->write(val.has_value());
if (val.has_value())
{
this->write(*val);
}
}
if (val.has_value())
{
this->write(*val);
}
}
template <typename T>
void write_span(const std::span<T> vec)
{
this->write(static_cast<uint64_t>(vec.size()));
template <typename T>
void write_span(const std::span<T> vec)
{
this->write(static_cast<uint64_t>(vec.size()));
for (const auto& v : vec)
{
this->write(v);
}
}
for (const auto& v : vec)
{
this->write(v);
}
}
template <typename T>
void write_vector(const std::vector<T> vec)
{
this->write_span(std::span(vec));
}
template <typename T>
void write_vector(const std::vector<T> vec)
{
this->write_span(std::span(vec));
}
template <typename T>
void write_string(const std::basic_string_view<T> str)
{
this->write_span<const T>(str);
}
template <typename T>
void write_string(const std::basic_string_view<T> str)
{
this->write_span<const T>(str);
}
template <typename T>
void write_string(const std::basic_string<T>& str)
{
this->write_string(std::basic_string_view<T>(str));
}
template <typename T>
void write_string(const std::basic_string<T>& str)
{
this->write_string(std::basic_string_view<T>(str));
}
template <typename Map>
void write_map(const Map& map)
{
this->write<uint64_t>(map.size());
template <typename Map>
void write_map(const Map& map)
{
this->write<uint64_t>(map.size());
for (const auto& entry : map)
{
this->write(entry.first);
this->write(entry.second);
}
}
for (const auto& entry : map)
{
this->write(entry.first);
this->write(entry.second);
}
}
const std::vector<std::byte>& get_buffer() const
{
return this->buffer_;
}
const std::vector<std::byte>& get_buffer() const
{
return this->buffer_;
}
std::vector<std::byte> move_buffer()
{
return std::move(this->buffer_);
}
std::vector<std::byte> move_buffer()
{
return std::move(this->buffer_);
}
private:
std::vector<std::byte> buffer_{};
};
private:
std::vector<std::byte> buffer_{};
};
template <>
inline void buffer_deserializer::read<bool>(bool& object)
{
object = this->read<uint8_t>() != 0;
}
template <>
inline void buffer_deserializer::read<bool>(bool& object)
{
object = this->read<uint8_t>() != 0;
}
template <>
inline void buffer_deserializer::read<std::string>(std::string& object)
{
object = this->read_string<char>();
}
template <>
inline void buffer_deserializer::read<std::string>(std::string& object)
{
object = this->read_string<char>();
}
template <>
inline void buffer_deserializer::read<std::wstring>(std::wstring& object)
{
object = this->read_string<wchar_t>();
}
template <>
inline void buffer_deserializer::read<std::wstring>(std::wstring& object)
{
object = this->read_string<wchar_t>();
}
template <>
inline void buffer_deserializer::read<std::u16string>(std::u16string& object)
{
object = this->read_string<char16_t>();
}
template <>
inline void buffer_deserializer::read<std::u16string>(std::u16string& object)
{
object = this->read_string<char16_t>();
}
template <>
inline void buffer_serializer::write<bool>(const bool& object)
{
this->write<uint8_t>(object ? 1 : 0);
}
template <>
inline void buffer_serializer::write<bool>(const bool& object)
{
this->write<uint8_t>(object ? 1 : 0);
}
template <>
inline void buffer_serializer::write<std::string>(const std::string& object)
{
this->write_string(object);
}
template <>
inline void buffer_serializer::write<std::string>(const std::string& object)
{
this->write_string(object);
}
template <>
inline void buffer_serializer::write<std::wstring>(const std::wstring& object)
{
this->write_string(object);
}
template <>
inline void buffer_serializer::write<std::wstring>(const std::wstring& object)
{
this->write_string(object);
}
template <>
inline void buffer_serializer::write<std::u16string>(const std::u16string& object)
{
this->write_string(object);
}
template <>
inline void buffer_serializer::write<std::u16string>(const std::u16string& object)
{
this->write_string(object);
}
}

View File

@@ -7,41 +7,41 @@
namespace utils
{
inline void serialize(buffer_serializer& buffer, const std::chrono::steady_clock::time_point& tp)
{
buffer.write(tp.time_since_epoch().count());
}
inline void serialize(buffer_serializer& buffer, const std::chrono::steady_clock::time_point& tp)
{
buffer.write(tp.time_since_epoch().count());
}
inline void deserialize(buffer_deserializer& buffer, std::chrono::steady_clock::time_point& tp)
{
using time_point = std::chrono::steady_clock::time_point;
using duration = time_point::duration;
inline void deserialize(buffer_deserializer& buffer, std::chrono::steady_clock::time_point& tp)
{
using time_point = std::chrono::steady_clock::time_point;
using duration = time_point::duration;
const auto count = buffer.read<duration::rep>();
tp = time_point{duration{count}};
}
const auto count = buffer.read<duration::rep>();
tp = time_point{duration{count}};
}
inline void serialize(buffer_serializer& buffer, const std::chrono::system_clock::time_point& tp)
{
buffer.write(tp.time_since_epoch().count());
}
inline void serialize(buffer_serializer& buffer, const std::chrono::system_clock::time_point& tp)
{
buffer.write(tp.time_since_epoch().count());
}
inline void deserialize(buffer_deserializer& buffer, std::chrono::system_clock::time_point& tp)
{
using time_point = std::chrono::system_clock::time_point;
using duration = time_point::duration;
inline void deserialize(buffer_deserializer& buffer, std::chrono::system_clock::time_point& tp)
{
using time_point = std::chrono::system_clock::time_point;
using duration = time_point::duration;
const auto count = buffer.read<duration::rep>();
tp = time_point{duration{count}};
}
const auto count = buffer.read<duration::rep>();
tp = time_point{duration{count}};
}
inline void serialize(buffer_serializer& buffer, const std::filesystem::path& path)
{
buffer.write_string<char16_t>(path.u16string());
}
inline void serialize(buffer_serializer& buffer, const std::filesystem::path& path)
{
buffer.write_string<char16_t>(path.u16string());
}
inline void deserialize(buffer_deserializer& buffer, std::filesystem::path& path)
{
path = buffer.read_string<char16_t>();
}
inline void deserialize(buffer_deserializer& buffer, std::filesystem::path& path)
{
path = buffer.read_string<char16_t>();
}
}

View File

@@ -2,94 +2,94 @@
#include "emulator.hpp"
template <typename PointerType, typename Register, Register InstructionPointer, Register
StackPointer, typename HookableInstructions>
template <typename PointerType, typename Register, Register InstructionPointer, Register StackPointer,
typename HookableInstructions>
class typed_emulator : public emulator
{
public:
using registers = Register;
using pointer_type = PointerType;
using hookable_instructions = HookableInstructions;
public:
using registers = Register;
using pointer_type = PointerType;
using hookable_instructions = HookableInstructions;
static constexpr size_t pointer_size = sizeof(pointer_type);
static constexpr registers stack_pointer = StackPointer;
static constexpr registers instruction_pointer = InstructionPointer;
static constexpr size_t pointer_size = sizeof(pointer_type);
static constexpr registers stack_pointer = StackPointer;
static constexpr registers instruction_pointer = InstructionPointer;
void start_from_ip(const std::chrono::nanoseconds timeout = {}, const size_t count = 0)
{
this->start(this->read_instruction_pointer(), 0, timeout, count);
}
void start_from_ip(const std::chrono::nanoseconds timeout = {}, const size_t count = 0)
{
this->start(this->read_instruction_pointer(), 0, timeout, count);
}
void write_register(registers reg, const void* value, const size_t size)
{
this->write_raw_register(static_cast<int>(reg), value, size);
}
void write_register(registers reg, const void* value, const size_t size)
{
this->write_raw_register(static_cast<int>(reg), value, size);
}
void read_register(registers reg, void* value, const size_t size)
{
this->read_raw_register(static_cast<int>(reg), value, size);
}
void read_register(registers reg, void* value, const size_t size)
{
this->read_raw_register(static_cast<int>(reg), value, size);
}
template <typename T = pointer_type>
T reg(const registers regid)
{
T value{};
this->read_register(regid, &value, sizeof(value));
return value;
}
template <typename T = pointer_type>
T reg(const registers regid)
{
T value{};
this->read_register(regid, &value, sizeof(value));
return value;
}
template <typename T = pointer_type, typename S>
void reg(const registers regid, const S& maybe_value)
{
T value = static_cast<T>(maybe_value);
this->write_register(regid, &value, sizeof(value));
}
template <typename T = pointer_type, typename S>
void reg(const registers regid, const S& maybe_value)
{
T value = static_cast<T>(maybe_value);
this->write_register(regid, &value, sizeof(value));
}
pointer_type read_instruction_pointer()
{
return this->reg(instruction_pointer);
}
pointer_type read_instruction_pointer()
{
return this->reg(instruction_pointer);
}
pointer_type read_stack_pointer()
{
return this->reg(stack_pointer);
}
pointer_type read_stack_pointer()
{
return this->reg(stack_pointer);
}
pointer_type read_stack(const size_t index)
{
pointer_type result{};
const auto sp = this->read_stack_pointer();
pointer_type read_stack(const size_t index)
{
pointer_type result{};
const auto sp = this->read_stack_pointer();
this->read_memory(sp + (index * pointer_size), &result, sizeof(result));
this->read_memory(sp + (index * pointer_size), &result, sizeof(result));
return result;
}
return result;
}
void push_stack(const pointer_type& value)
{
const auto sp = this->read_stack_pointer() - pointer_size;
this->reg(stack_pointer, sp);
this->write_memory(sp, &value, sizeof(value));
}
void push_stack(const pointer_type& value)
{
const auto sp = this->read_stack_pointer() - pointer_size;
this->reg(stack_pointer, sp);
this->write_memory(sp, &value, sizeof(value));
}
pointer_type pop_stack()
{
pointer_type result{};
const auto sp = this->read_stack_pointer();
this->read_memory(sp, &result, sizeof(result));
this->reg(stack_pointer, sp + pointer_size);
pointer_type pop_stack()
{
pointer_type result{};
const auto sp = this->read_stack_pointer();
this->read_memory(sp, &result, sizeof(result));
this->reg(stack_pointer, sp + pointer_size);
return result;
}
return result;
}
emulator_hook* hook_instruction(hookable_instructions instruction_type, instruction_hook_callback callback)
{
return this->hook_instruction(static_cast<int>(instruction_type), std::move(callback));
}
emulator_hook* hook_instruction(hookable_instructions instruction_type, instruction_hook_callback callback)
{
return this->hook_instruction(static_cast<int>(instruction_type), std::move(callback));
}
private:
emulator_hook* hook_instruction(int instruction_type, instruction_hook_callback callback) override = 0;
private:
emulator_hook* hook_instruction(int instruction_type, instruction_hook_callback callback) override = 0;
void read_raw_register(int reg, void* value, size_t size) override = 0;
void write_raw_register(int reg, const void* value, size_t size) override = 0;
void read_raw_register(int reg, void* value, size_t size) override = 0;
void write_raw_register(int reg, const void* value, size_t size) override = 0;
};

View File

@@ -4,12 +4,12 @@
enum class x64_hookable_instructions
{
invalid,
syscall,
cpuid,
rdtsc,
rdtscp,
invalid,
syscall,
cpuid,
rdtsc,
rdtscp,
};
using x64_emulator = typed_emulator<uint64_t, x64_register, x64_register::rip,
x64_register::rsp, x64_hookable_instructions>;
using x64_emulator =
typed_emulator<uint64_t, x64_register, x64_register::rip, x64_register::rsp, x64_hookable_instructions>;

View File

@@ -2,244 +2,244 @@
enum class x64_register
{
invalid = 0,
ah,
al,
ax,
bh,
bl,
bp,
bpl,
bx,
ch,
cl,
cs,
cx,
dh,
di,
dil,
dl,
ds,
dx,
eax,
ebp,
ebx,
ecx,
edi,
edx,
eflags,
eip,
es = eip + 2,
esi,
esp,
fpsw,
fs,
gs,
ip,
rax,
rbp,
rbx,
rcx,
rdi,
rdx,
rip,
rsi = rip + 2,
rsp,
si,
sil,
sp,
spl,
ss,
cr0,
cr1,
cr2,
cr3,
cr4,
cr8 = cr4 + 4,
dr0 = cr8 + 8,
dr1,
dr2,
dr3,
dr4,
dr5,
dr6,
dr7,
fp0 = dr7 + 9,
fp1,
fp2,
fp3,
fp4,
fp5,
fp6,
fp7,
k0,
k1,
k2,
k3,
k4,
k5,
k6,
k7,
mm0,
mm1,
mm2,
mm3,
mm4,
mm5,
mm6,
mm7,
r8,
r9,
r10,
r11,
r12,
r13,
r14,
r15,
st0,
st1,
st2,
st3,
st4,
st5,
st6,
st7,
xmm0,
xmm1,
xmm2,
xmm3,
xmm4,
xmm5,
xmm6,
xmm7,
xmm8,
xmm9,
xmm10,
xmm11,
xmm12,
xmm13,
xmm14,
xmm15,
xmm16,
xmm17,
xmm18,
xmm19,
xmm20,
xmm21,
xmm22,
xmm23,
xmm24,
xmm25,
xmm26,
xmm27,
xmm28,
xmm29,
xmm30,
xmm31,
ymm0,
ymm1,
ymm2,
ymm3,
ymm4,
ymm5,
ymm6,
ymm7,
ymm8,
ymm9,
ymm10,
ymm11,
ymm12,
ymm13,
ymm14,
ymm15,
ymm16,
ymm17,
ymm18,
ymm19,
ymm20,
ymm21,
ymm22,
ymm23,
ymm24,
ymm25,
ymm26,
ymm27,
ymm28,
ymm29,
ymm30,
ymm31,
zmm0,
zmm1,
zmm2,
zmm3,
zmm4,
zmm5,
zmm6,
zmm7,
zmm8,
zmm9,
zmm10,
zmm11,
zmm12,
zmm13,
zmm14,
zmm15,
zmm16,
zmm17,
zmm18,
zmm19,
zmm20,
zmm21,
zmm22,
zmm23,
zmm24,
zmm25,
zmm26,
zmm27,
zmm28,
zmm29,
zmm30,
zmm31,
r8b,
r9b,
r10b,
r11b,
r12b,
r13b,
r14b,
r15b,
r8d,
r9d,
r10d,
r11d,
r12d,
r13d,
r14d,
r15d,
r8w,
r9w,
r10w,
r11w,
r12w,
r13w,
r14w,
r15w,
idtr,
gdtr,
ldtr,
tr,
fpcw,
fptag,
msr,
mxcsr,
fs_base,
gs_base,
flags,
rflags,
fip,
fcs,
fdp,
fds,
fop,
end, // Must be last
invalid = 0,
ah,
al,
ax,
bh,
bl,
bp,
bpl,
bx,
ch,
cl,
cs,
cx,
dh,
di,
dil,
dl,
ds,
dx,
eax,
ebp,
ebx,
ecx,
edi,
edx,
eflags,
eip,
es = eip + 2,
esi,
esp,
fpsw,
fs,
gs,
ip,
rax,
rbp,
rbx,
rcx,
rdi,
rdx,
rip,
rsi = rip + 2,
rsp,
si,
sil,
sp,
spl,
ss,
cr0,
cr1,
cr2,
cr3,
cr4,
cr8 = cr4 + 4,
dr0 = cr8 + 8,
dr1,
dr2,
dr3,
dr4,
dr5,
dr6,
dr7,
fp0 = dr7 + 9,
fp1,
fp2,
fp3,
fp4,
fp5,
fp6,
fp7,
k0,
k1,
k2,
k3,
k4,
k5,
k6,
k7,
mm0,
mm1,
mm2,
mm3,
mm4,
mm5,
mm6,
mm7,
r8,
r9,
r10,
r11,
r12,
r13,
r14,
r15,
st0,
st1,
st2,
st3,
st4,
st5,
st6,
st7,
xmm0,
xmm1,
xmm2,
xmm3,
xmm4,
xmm5,
xmm6,
xmm7,
xmm8,
xmm9,
xmm10,
xmm11,
xmm12,
xmm13,
xmm14,
xmm15,
xmm16,
xmm17,
xmm18,
xmm19,
xmm20,
xmm21,
xmm22,
xmm23,
xmm24,
xmm25,
xmm26,
xmm27,
xmm28,
xmm29,
xmm30,
xmm31,
ymm0,
ymm1,
ymm2,
ymm3,
ymm4,
ymm5,
ymm6,
ymm7,
ymm8,
ymm9,
ymm10,
ymm11,
ymm12,
ymm13,
ymm14,
ymm15,
ymm16,
ymm17,
ymm18,
ymm19,
ymm20,
ymm21,
ymm22,
ymm23,
ymm24,
ymm25,
ymm26,
ymm27,
ymm28,
ymm29,
ymm30,
ymm31,
zmm0,
zmm1,
zmm2,
zmm3,
zmm4,
zmm5,
zmm6,
zmm7,
zmm8,
zmm9,
zmm10,
zmm11,
zmm12,
zmm13,
zmm14,
zmm15,
zmm16,
zmm17,
zmm18,
zmm19,
zmm20,
zmm21,
zmm22,
zmm23,
zmm24,
zmm25,
zmm26,
zmm27,
zmm28,
zmm29,
zmm30,
zmm31,
r8b,
r9b,
r10b,
r11b,
r12b,
r13b,
r14b,
r15b,
r8d,
r9d,
r10d,
r11d,
r12d,
r13d,
r14d,
r15d,
r8w,
r9w,
r10w,
r11w,
r12w,
r13w,
r14w,
r15w,
idtr,
gdtr,
ldtr,
tr,
fpcw,
fptag,
msr,
mxcsr,
fs_base,
gs_base,
flags,
rflags,
fip,
fcs,
fdp,
fds,
fop,
end, // Must be last
};

View File

@@ -9,192 +9,183 @@ bool use_gdb = false;
namespace
{
void run_emulation(windows_emulator& win_emu)
{
try
{
win_emu.log.disable_output(true);
win_emu.start();
void run_emulation(windows_emulator& win_emu)
{
try
{
win_emu.log.disable_output(true);
win_emu.start();
if (win_emu.process().exception_rip.has_value())
{
throw std::runtime_error("Exception!");
}
}
catch (...)
{
win_emu.log.disable_output(false);
win_emu.log.print(color::red, "Emulation failed at: 0x%" PRIx64 "\n",
win_emu.emu().read_instruction_pointer());
throw;
}
if (win_emu.process().exception_rip.has_value())
{
throw std::runtime_error("Exception!");
}
}
catch (...)
{
win_emu.log.disable_output(false);
win_emu.log.print(color::red, "Emulation failed at: 0x%" PRIx64 "\n",
win_emu.emu().read_instruction_pointer());
throw;
}
win_emu.log.disable_output(false);
}
win_emu.log.disable_output(false);
}
void forward_emulator(windows_emulator& win_emu)
{
const auto target = win_emu.process().executable->find_export("vulnerable");
win_emu.emu().hook_memory_execution(target, 1, [&](uint64_t, size_t, uint64_t)
{
win_emu.emu().stop();
});
void forward_emulator(windows_emulator& win_emu)
{
const auto target = win_emu.process().executable->find_export("vulnerable");
win_emu.emu().hook_memory_execution(target, 1, [&](uint64_t, size_t, uint64_t) { win_emu.emu().stop(); });
run_emulation(win_emu);
}
run_emulation(win_emu);
}
struct fuzzer_executer : fuzzer::executer
{
windows_emulator emu{};
std::span<const std::byte> emulator_data{};
std::unordered_set<uint64_t> visited_blocks{};
const std::function<fuzzer::coverage_functor>* handler{nullptr};
struct fuzzer_executer : fuzzer::executer
{
windows_emulator emu{};
std::span<const std::byte> emulator_data{};
std::unordered_set<uint64_t> visited_blocks{};
const std::function<fuzzer::coverage_functor>* handler{nullptr};
fuzzer_executer(std::span<const std::byte> data)
: emulator_data(data)
{
emu.fuzzing = true;
emu.emu().hook_basic_block([&](const basic_block& block) {
if (this->handler && visited_blocks.emplace(block.address).second)
{
(*this->handler)(block.address);
}
});
fuzzer_executer(std::span<const std::byte> data)
: emulator_data(data)
{
emu.fuzzing = true;
emu.emu().hook_basic_block([&](const basic_block& block)
{
if (this->handler && visited_blocks.emplace(block.address).second)
{
(*this->handler)(block.address);
}
});
utils::buffer_deserializer deserializer{emulator_data};
emu.deserialize(deserializer);
emu.save_snapshot();
utils::buffer_deserializer deserializer{emulator_data};
emu.deserialize(deserializer);
emu.save_snapshot();
const auto ret = emu.emu().read_stack(0);
const auto ret = emu.emu().read_stack(0);
emu.emu().hook_memory_execution(ret, 1, [&](uint64_t, size_t, uint64_t) { emu.emu().stop(); });
}
emu.emu().hook_memory_execution(ret, 1, [&](uint64_t, size_t, uint64_t)
{
emu.emu().stop();
});
}
void restore_emulator()
{
/*utils::buffer_deserializer deserializer{ emulator_data };
emu.deserialize(deserializer);*/
emu.restore_snapshot();
}
void restore_emulator()
{
/*utils::buffer_deserializer deserializer{ emulator_data };
emu.deserialize(deserializer);*/
emu.restore_snapshot();
}
fuzzer::execution_result execute(std::span<const uint8_t> data,
const std::function<fuzzer::coverage_functor>& coverage_handler) override
{
// printf("Input size: %zd\n", data.size());
this->handler = &coverage_handler;
this->visited_blocks.clear();
fuzzer::execution_result execute(std::span<const uint8_t> data,
const std::function<fuzzer::coverage_functor>& coverage_handler) override
{
//printf("Input size: %zd\n", data.size());
this->handler = &coverage_handler;
this->visited_blocks.clear();
restore_emulator();
restore_emulator();
const auto memory = emu.emu().allocate_memory(page_align_up(std::max(data.size(), size_t(1))),
memory_permission::read_write);
emu.emu().write_memory(memory, data.data(), data.size());
const auto memory = emu.emu().allocate_memory(page_align_up(std::max(data.size(), size_t(1))),
memory_permission::read_write);
emu.emu().write_memory(memory, data.data(), data.size());
emu.emu().reg(x64_register::rcx, memory);
emu.emu().reg<uint64_t>(x64_register::rdx, data.size());
emu.emu().reg(x64_register::rcx, memory);
emu.emu().reg<uint64_t>(x64_register::rdx, data.size());
try
{
run_emulation(emu);
return fuzzer::execution_result::success;
}
catch (...)
{
return fuzzer::execution_result::error;
}
}
};
try
{
run_emulation(emu);
return fuzzer::execution_result::success;
}
catch (...)
{
return fuzzer::execution_result::error;
}
}
};
struct my_fuzzing_handler : fuzzer::fuzzing_handler
{
std::vector<std::byte> emulator_state{};
std::atomic_bool stop_fuzzing{false};
struct my_fuzzing_handler : fuzzer::fuzzing_handler
{
std::vector<std::byte> emulator_state{};
std::atomic_bool stop_fuzzing{false};
my_fuzzing_handler(std::vector<std::byte> emulator_state)
: emulator_state(std::move(emulator_state))
{
}
my_fuzzing_handler(std::vector<std::byte> emulator_state)
: emulator_state(std::move(emulator_state))
{
}
std::unique_ptr<fuzzer::executer> make_executer() override
{
return std::make_unique<fuzzer_executer>(emulator_state);
}
std::unique_ptr<fuzzer::executer> make_executer() override
{
return std::make_unique<fuzzer_executer>(emulator_state);
}
bool stop() override
{
return stop_fuzzing;
}
};
bool stop() override
{
return stop_fuzzing;
}
};
void run_fuzzer(const windows_emulator& base_emulator)
{
const auto concurrency = std::thread::hardware_concurrency() + 2;
void run_fuzzer(const windows_emulator& base_emulator)
{
const auto concurrency = std::thread::hardware_concurrency() + 2;
utils::buffer_serializer serializer{};
base_emulator.serialize(serializer);
utils::buffer_serializer serializer{};
base_emulator.serialize(serializer);
my_fuzzing_handler handler{serializer.move_buffer()};
my_fuzzing_handler handler{serializer.move_buffer()};
fuzzer::run(handler, concurrency);
}
fuzzer::run(handler, concurrency);
}
void run(const std::string_view application)
{
emulator_settings settings{
.application = application,
};
void run(const std::string_view application)
{
emulator_settings settings{
.application = application,
};
windows_emulator win_emu{std::move(settings)};
windows_emulator win_emu{std::move(settings)};
forward_emulator(win_emu);
run_fuzzer(win_emu);
}
forward_emulator(win_emu);
run_fuzzer(win_emu);
}
}
int main(const int argc, char** argv)
{
if (argc <= 1)
{
puts("Application not specified!");
return 1;
}
if (argc <= 1)
{
puts("Application not specified!");
return 1;
}
//setvbuf(stdout, nullptr, _IOFBF, 0x10000);
if (argc > 2 && argv[1] == "-d"s)
{
use_gdb = true;
}
// setvbuf(stdout, nullptr, _IOFBF, 0x10000);
if (argc > 2 && argv[1] == "-d"s)
{
use_gdb = true;
}
try
{
do
{
run(argv[use_gdb ? 2 : 1]);
}
while (use_gdb);
try
{
do
{
run(argv[use_gdb ? 2 : 1]);
} while (use_gdb);
return 0;
}
catch (std::exception& e)
{
puts(e.what());
return 0;
}
catch (std::exception& e)
{
puts(e.what());
#if defined(_WIN32) && 0
MessageBoxA(nullptr, e.what(), "ERROR", MB_ICONERROR);
MessageBoxA(nullptr, e.what(), "ERROR", MB_ICONERROR);
#endif
}
}
return 1;
return 1;
}
#ifdef _WIN32
int WINAPI WinMain(HINSTANCE, HINSTANCE, PSTR, int)
{
return main(__argc, __argv);
return main(__argc, __argv);
}
#endif

View File

@@ -5,128 +5,121 @@
namespace fuzzer
{
namespace
{
class fuzzing_context
{
public:
fuzzing_context(input_generator& generator, fuzzing_handler& handler)
: generator(generator)
, handler(handler)
{
}
namespace
{
class fuzzing_context
{
public:
fuzzing_context(input_generator& generator, fuzzing_handler& handler)
: generator(generator),
handler(handler)
{
}
void stop()
{
this->stop_ = true;
}
void stop()
{
this->stop_ = true;
}
bool should_stop()
{
if (this->stop_)
{
return true;
}
bool should_stop()
{
if (this->stop_)
{
return true;
}
if (!handler.stop())
{
return false;
}
if (!handler.stop())
{
return false;
}
this->stop_ = true;
return true;
}
this->stop_ = true;
return true;
}
input_generator& generator;
fuzzing_handler& handler;
std::atomic_uint64_t executions{0};
input_generator& generator;
fuzzing_handler& handler;
std::atomic_uint64_t executions{0};
private:
std::atomic_bool stop_{false};
};
private:
std::atomic_bool stop_{false};
};
void perform_fuzzing_iteration(fuzzing_context& context, executer& executer)
{
++context.executions;
context.generator.access_input([&](const std::span<const uint8_t> input)
{
uint64_t score{0};
const auto result = executer.execute(input, [&](uint64_t)
{
++score;
});
void perform_fuzzing_iteration(fuzzing_context& context, executer& executer)
{
++context.executions;
context.generator.access_input([&](const std::span<const uint8_t> input) {
uint64_t score{0};
const auto result = executer.execute(input, [&](uint64_t) { ++score; });
if (result == execution_result::error)
{
printf("Found error!\n");
context.stop();
}
if (result == execution_result::error)
{
printf("Found error!\n");
context.stop();
}
return score;
});
}
return score;
});
}
void worker(fuzzing_context& context)
{
const auto executer = context.handler.make_executer();
void worker(fuzzing_context& context)
{
const auto executer = context.handler.make_executer();
while (!context.should_stop())
{
perform_fuzzing_iteration(context, *executer);
}
}
while (!context.should_stop())
{
perform_fuzzing_iteration(context, *executer);
}
}
struct worker_pool
{
fuzzing_context* context_{nullptr};
std::vector<std::thread> workers_{};
struct worker_pool
{
fuzzing_context* context_{nullptr};
std::vector<std::thread> workers_{};
worker_pool(fuzzing_context& context, const size_t concurrency)
: context_(&context)
{
this->workers_.reserve(concurrency);
worker_pool(fuzzing_context& context, const size_t concurrency)
: context_(&context)
{
this->workers_.reserve(concurrency);
for (size_t i = 0; i < concurrency; ++i)
{
this->workers_.emplace_back([&context]
{
worker(context);
});
}
}
for (size_t i = 0; i < concurrency; ++i)
{
this->workers_.emplace_back([&context] { worker(context); });
}
}
~worker_pool()
{
if (this->workers_.empty())
{
return;
}
~worker_pool()
{
if (this->workers_.empty())
{
return;
}
this->context_->stop();
this->context_->stop();
for (auto& w : this->workers_)
{
w.join();
}
}
};
}
for (auto& w : this->workers_)
{
w.join();
}
}
};
}
void run(fuzzing_handler& handler, const size_t concurrency)
{
input_generator generator{};
fuzzing_context context{generator, handler};
worker_pool pool{context, concurrency};
void run(fuzzing_handler& handler, const size_t concurrency)
{
input_generator generator{};
fuzzing_context context{generator, handler};
worker_pool pool{context, concurrency};
while (!context.should_stop())
{
std::this_thread::sleep_for(std::chrono::seconds{1});
while (!context.should_stop())
{
std::this_thread::sleep_for(std::chrono::seconds{1});
const auto executions = context.executions.exchange(0);
const auto highest_scorer = context.generator.get_highest_scorer();
const auto avg_score = context.generator.get_average_score();
printf("Executions/s: %" PRIu64 " - Score: %" PRIx64 " - Avg: %.3f\n", executions, highest_scorer.score,
avg_score);
}
}
const auto executions = context.executions.exchange(0);
const auto highest_scorer = context.generator.get_highest_scorer();
const auto avg_score = context.generator.get_average_score();
printf("Executions/s: %" PRIu64 " - Score: %" PRIx64 " - Avg: %.3f\n", executions, highest_scorer.score,
avg_score);
}
}
}

View File

@@ -7,33 +7,33 @@
namespace fuzzer
{
using coverage_functor = void(uint64_t address);
using coverage_functor = void(uint64_t address);
enum class execution_result
{
success,
error,
};
enum class execution_result
{
success,
error,
};
struct executer
{
virtual ~executer() = default;
struct executer
{
virtual ~executer() = default;
virtual execution_result execute(std::span<const uint8_t> data,
const std::function<coverage_functor>& coverage_handler) = 0;
};
virtual execution_result execute(std::span<const uint8_t> data,
const std::function<coverage_functor>& coverage_handler) = 0;
};
struct fuzzing_handler
{
virtual ~fuzzing_handler() = default;
struct fuzzing_handler
{
virtual ~fuzzing_handler() = default;
virtual std::unique_ptr<executer> make_executer() = 0;
virtual std::unique_ptr<executer> make_executer() = 0;
virtual bool stop()
{
return false;
}
};
virtual bool stop()
{
return false;
}
};
void run(fuzzing_handler& handler, size_t concurrency = std::thread::hardware_concurrency());
void run(fuzzing_handler& handler, size_t concurrency = std::thread::hardware_concurrency());
}

View File

@@ -4,120 +4,118 @@
namespace fuzzer
{
namespace
{
constexpr size_t MAX_TOP_SCORER = 20;
namespace
{
constexpr size_t MAX_TOP_SCORER = 20;
void mutate_input(random_generator& rng, std::vector<uint8_t>& input)
{
if (input.empty() || rng.get(3) == 0)
{
const auto new_bytes = rng.get_geometric<size_t>() + 1;
input.resize(input.size() + new_bytes);
}
else if (rng.get(10) == 0)
{
const auto remove_bytes = rng.get_geometric<size_t>() % input.size();
input.resize(input.size() - remove_bytes);
}
void mutate_input(random_generator& rng, std::vector<uint8_t>& input)
{
if (input.empty() || rng.get(3) == 0)
{
const auto new_bytes = rng.get_geometric<size_t>() + 1;
input.resize(input.size() + new_bytes);
}
else if (rng.get(10) == 0)
{
const auto remove_bytes = rng.get_geometric<size_t>() % input.size();
input.resize(input.size() - remove_bytes);
}
const auto mutations = (rng.get_geometric<size_t>() + 1) % input.size();
const auto mutations = (rng.get_geometric<size_t>() + 1) % input.size();
for (size_t i = 0; i < mutations; ++i)
{
const auto index = rng.get<size_t>(input.size());
input[index] = rng.get<uint8_t>();
}
}
}
for (size_t i = 0; i < mutations; ++i)
{
const auto index = rng.get<size_t>(input.size());
input[index] = rng.get<uint8_t>();
}
}
}
input_generator::input_generator() = default;
input_generator::input_generator() = default;
std::vector<uint8_t> input_generator::generate_next_input()
{
std::vector<uint8_t> input{};
std::unique_lock lock{this->mutex_};
std::vector<uint8_t> input_generator::generate_next_input()
{
std::vector<uint8_t> input{};
std::unique_lock lock{this->mutex_};
if (!this->top_scorer_.empty())
{
const auto index = this->rng.get<size_t>() % this->top_scorer_.size();
input = this->top_scorer_[index].data;
}
if (!this->top_scorer_.empty())
{
const auto index = this->rng.get<size_t>() % this->top_scorer_.size();
input = this->top_scorer_[index].data;
}
mutate_input(this->rng, input);
mutate_input(this->rng, input);
return input;
}
return input;
}
void input_generator::access_input(const std::function<input_handler>& handler)
{
auto next_input = this->generate_next_input();
const auto score = handler(next_input);
void input_generator::access_input(const std::function<input_handler>& handler)
{
auto next_input = this->generate_next_input();
const auto score = handler(next_input);
input_entry e{};
e.data = std::move(next_input);
e.score = score;
input_entry e{};
e.data = std::move(next_input);
e.score = score;
this->store_input_entry(std::move(e));
}
this->store_input_entry(std::move(e));
}
input_entry input_generator::get_highest_scorer()
{
std::unique_lock lock{this->mutex_};
return this->highest_scorer_;
}
input_entry input_generator::get_highest_scorer()
{
std::unique_lock lock{this->mutex_};
return this->highest_scorer_;
}
double input_generator::get_average_score()
{
std::unique_lock lock{this->mutex_};
double input_generator::get_average_score()
{
std::unique_lock lock{this->mutex_};
double score{0.0};
for (const auto& e : this->top_scorer_)
{
score += static_cast<double>(e.score);
}
double score{0.0};
for (const auto& e : this->top_scorer_)
{
score += static_cast<double>(e.score);
}
return score / static_cast<double>(this->top_scorer_.size());
}
return score / static_cast<double>(this->top_scorer_.size());
}
void input_generator::store_input_entry(input_entry entry)
{
std::unique_lock lock{this->mutex_};
void input_generator::store_input_entry(input_entry entry)
{
std::unique_lock lock{this->mutex_};
if (entry.score < this->lowest_score && this->rng.get(40) != 0)
{
return;
}
if (entry.score < this->lowest_score && this->rng.get(40) != 0)
{
return;
}
if (entry.score > this->highest_scorer_.score)
{
this->highest_scorer_ = entry;
}
if (entry.score > this->highest_scorer_.score)
{
this->highest_scorer_ = entry;
}
if (this->top_scorer_.size() < MAX_TOP_SCORER)
{
this->top_scorer_.emplace_back(std::move(entry));
return;
}
if (this->top_scorer_.size() < MAX_TOP_SCORER)
{
this->top_scorer_.emplace_back(std::move(entry));
return;
}
const auto insert_at_random = this->rng.get(10) == 0;
const auto index =
insert_at_random ? (this->rng.get<size_t>() % this->top_scorer_.size()) : this->lowest_scorer;
const auto insert_at_random = this->rng.get(10) == 0;
const auto index = insert_at_random
? (this->rng.get<size_t>() % this->top_scorer_.size())
: this->lowest_scorer;
this->top_scorer_[index] = std::move(entry);
this->top_scorer_[index] = std::move(entry);
this->lowest_score = this->top_scorer_[0].score;
this->lowest_scorer = 0;
this->lowest_score = this->top_scorer_[0].score;
this->lowest_scorer = 0;
for (size_t i = 1; i < this->top_scorer_.size(); ++i)
{
if (this->top_scorer_[i].score < this->lowest_score)
{
this->lowest_score = this->top_scorer_[i].score;
this->lowest_scorer = i;
}
}
}
for (size_t i = 1; i < this->top_scorer_.size(); ++i)
{
if (this->top_scorer_[i].score < this->lowest_score)
{
this->lowest_score = this->top_scorer_[i].score;
this->lowest_scorer = i;
}
}
}
}

View File

@@ -8,37 +8,37 @@
namespace fuzzer
{
using input_score = uint64_t;
using input_handler = input_score(std::span<const uint8_t>);
using input_score = uint64_t;
using input_handler = input_score(std::span<const uint8_t>);
struct input_entry
{
std::vector<uint8_t> data{};
input_score score{};
};
struct input_entry
{
std::vector<uint8_t> data{};
input_score score{};
};
class input_generator
{
public:
input_generator();
class input_generator
{
public:
input_generator();
void access_input(const std::function<input_handler>& handler);
void access_input(const std::function<input_handler>& handler);
input_entry get_highest_scorer();
double get_average_score();
input_entry get_highest_scorer();
double get_average_score();
private:
std::mutex mutex_{};
random_generator rng{};
private:
std::mutex mutex_{};
random_generator rng{};
std::vector<input_entry> top_scorer_{};
input_score lowest_score{0};
size_t lowest_scorer{0};
std::vector<input_entry> top_scorer_{};
input_score lowest_score{0};
size_t lowest_scorer{0};
input_entry highest_scorer_{};
input_entry highest_scorer_{};
std::vector<uint8_t> generate_next_input();
std::vector<uint8_t> generate_next_input();
void store_input_entry(input_entry entry);
};
void store_input_entry(input_entry entry);
};
}

View File

@@ -3,33 +3,33 @@
namespace fuzzer
{
random_generator::random_generator()
: rng_(std::random_device()())
{
}
random_generator::random_generator()
: rng_(std::random_device()())
{
}
std::mt19937::result_type random_generator::generate_number()
{
return this->distribution_(this->rng_);
}
std::mt19937::result_type random_generator::generate_number()
{
return this->distribution_(this->rng_);
}
void random_generator::fill(void* data, const size_t size)
{
this->fill(std::span(static_cast<uint8_t*>(data), size));
}
void random_generator::fill(void* data, const size_t size)
{
this->fill(std::span(static_cast<uint8_t*>(data), size));
}
void random_generator::fill(std::span<uint8_t> data)
{
size_t i = 0;
while (i < data.size())
{
const auto number = this->generate_number();
void random_generator::fill(std::span<uint8_t> data)
{
size_t i = 0;
while (i < data.size())
{
const auto number = this->generate_number();
const auto remaining_data = data.size() - i;
const auto data_to_fill = std::min(remaining_data, sizeof(number));
const auto remaining_data = data.size() - i;
const auto data_to_fill = std::min(remaining_data, sizeof(number));
memcpy(data.data() + i, &number, data_to_fill);
i += data_to_fill;
}
}
memcpy(data.data() + i, &number, data_to_fill);
i += data_to_fill;
}
}
}

View File

@@ -6,65 +6,65 @@
namespace fuzzer
{
class random_generator
{
public:
random_generator();
class random_generator
{
public:
random_generator();
void fill(std::span<uint8_t> data);
void fill(void* data, size_t size);
void fill(std::span<uint8_t> data);
void fill(void* data, size_t size);
template <typename T>
requires(std::is_trivially_copyable_v<T>)
T get()
{
T value{};
this->fill(&value, sizeof(value));
return value;
}
template <typename T>
requires(std::is_trivially_copyable_v<T>)
T get()
{
T value{};
this->fill(&value, sizeof(value));
return value;
}
template <typename T>
T get(const T& max)
{
return this->get<T>() % max;
}
template <typename T>
T get(const T& max)
{
return this->get<T>() % max;
}
template <typename T>
T get(T min, T max)
{
if (max < min)
{
std::swap(max, min);
}
template <typename T>
T get(T min, T max)
{
if (max < min)
{
std::swap(max, min);
}
const auto diff = max - min;
const auto diff = max - min;
return (this->get<T>() % diff) + min;
}
return (this->get<T>() % diff) + min;
}
template <typename T>
T get_geometric()
{
T value{0};
template <typename T>
T get_geometric()
{
T value{0};
while (this->get<bool>())
{
++value;
}
while (this->get<bool>())
{
++value;
}
return value;
}
return value;
}
private:
std::mt19937 rng_;
std::uniform_int_distribution<std::mt19937::result_type> distribution_{};
private:
std::mt19937 rng_;
std::uniform_int_distribution<std::mt19937::result_type> distribution_{};
std::mt19937::result_type generate_number();
};
std::mt19937::result_type generate_number();
};
template <>
inline bool random_generator::get<bool>()
{
return (this->generate_number() & 1) != 0;
}
template <>
inline bool random_generator::get<bool>()
{
return (this->generate_number() & 1) != 0;
}
}

View File

@@ -19,12 +19,12 @@ __declspec(dllexport) bool do_the_task = true;
struct tls_struct
{
DWORD num = 1337;
DWORD num = 1337;
tls_struct()
{
num = GetCurrentThreadId();
}
tls_struct()
{
num = GetCurrentThreadId();
}
};
thread_local tls_struct tls_var{};
@@ -32,297 +32,293 @@ thread_local tls_struct tls_var{};
// getenv is broken right now :(
std::string read_env(const char* env)
{
char buffer[0x1000] = {};
if (!GetEnvironmentVariableA(env, buffer, sizeof(buffer)))
{
return {};
}
char buffer[0x1000] = {};
if (!GetEnvironmentVariableA(env, buffer, sizeof(buffer)))
{
return {};
}
return buffer;
return buffer;
}
bool test_threads()
{
constexpr auto thread_count = 5ULL;
constexpr auto thread_count = 5ULL;
std::atomic<uint64_t> counter{0};
std::atomic<uint64_t> counter{0};
std::vector<std::thread> threads{};
threads.reserve(thread_count);
std::vector<std::thread> threads{};
threads.reserve(thread_count);
for (auto i = 0ULL; i < thread_count; ++i)
{
threads.emplace_back([&counter]
{
++counter;
std::this_thread::yield();
++counter;
// Host scheduling/cpu performance can have impact on emulator scheduling
//std::this_thread::sleep_for(std::chrono::milliseconds(100));
++counter;
});
}
for (auto i = 0ULL; i < thread_count; ++i)
{
threads.emplace_back([&counter] {
++counter;
std::this_thread::yield();
++counter;
// Host scheduling/cpu performance can have impact on emulator scheduling
// std::this_thread::sleep_for(std::chrono::milliseconds(100));
++counter;
});
}
for (auto& t : threads)
{
t.join();
}
for (auto& t : threads)
{
t.join();
}
return counter == (thread_count * 3ULL);
return counter == (thread_count * 3ULL);
}
bool test_tls()
{
std::atomic_bool kill{false};
std::atomic_uint32_t successes{0};
constexpr uint32_t thread_count = 2;
std::atomic_bool kill{false};
std::atomic_uint32_t successes{0};
constexpr uint32_t thread_count = 2;
std::vector<std::thread> ts{};
kill = false;
std::vector<std::thread> ts{};
kill = false;
for (size_t i = 0; i < thread_count; ++i)
{
ts.emplace_back([&]
{
while (!kill)
{
std::this_thread::yield();
}
for (size_t i = 0; i < thread_count; ++i)
{
ts.emplace_back([&] {
while (!kill)
{
std::this_thread::yield();
}
if (tls_var.num == GetCurrentThreadId())
{
++successes;
}
});
}
if (tls_var.num == GetCurrentThreadId())
{
++successes;
}
});
}
LoadLibraryA("d3dcompiler_47.dll");
LoadLibraryA("dsound.dll");
/*LoadLibraryA("d3d9.dll");
LoadLibraryA("dxgi.dll");
LoadLibraryA("wlanapi.dll");*/
LoadLibraryA("d3dcompiler_47.dll");
LoadLibraryA("dsound.dll");
/*LoadLibraryA("d3d9.dll");
LoadLibraryA("dxgi.dll");
LoadLibraryA("wlanapi.dll");*/
kill = true;
kill = true;
for (auto& t : ts)
{
if (t.joinable())
{
t.join();
}
}
for (auto& t : ts)
{
if (t.joinable())
{
t.join();
}
}
return successes == thread_count;
return successes == thread_count;
}
bool test_env()
{
const auto computername = read_env("COMPUTERNAME");
const auto computername = read_env("COMPUTERNAME");
SetEnvironmentVariableA("BLUB", "LUL");
SetEnvironmentVariableA("BLUB", "LUL");
const auto blub = read_env("BLUB");
const auto blub = read_env("BLUB");
return !computername.empty() && blub == "LUL";
return !computername.empty() && blub == "LUL";
}
bool test_io()
{
const auto* filename = "a.txt";
const auto* filename = "a.txt";
FILE* fp{};
(void)fopen_s(&fp, filename, "wb");
FILE* fp{};
(void)fopen_s(&fp, filename, "wb");
if (!fp)
{
puts("Bad file");
return false;
}
if (!fp)
{
puts("Bad file");
return false;
}
const std::string text = "Blub";
const std::string text = "Blub";
(void)fwrite(text.data(), 1, text.size(), fp);
(void)fclose(fp);
(void)fwrite(text.data(), 1, text.size(), fp);
(void)fclose(fp);
std::ifstream t(filename);
t.seekg(0, std::ios::end);
const size_t size = t.tellg();
std::string buffer(size, ' ');
t.seekg(0);
t.read(buffer.data(), static_cast<std::streamsize>(size));
std::ifstream t(filename);
t.seekg(0, std::ios::end);
const size_t size = t.tellg();
std::string buffer(size, ' ');
t.seekg(0);
t.read(buffer.data(), static_cast<std::streamsize>(size));
return text == buffer;
return text == buffer;
}
bool test_dir_io()
{
size_t count = 0;
size_t count = 0;
for (auto i : std::filesystem::directory_iterator(R"(C:\Windows\System32\)"))
{
++count;
if (count > 30)
{
return true;
}
}
for (auto i : std::filesystem::directory_iterator(R"(C:\Windows\System32\)"))
{
++count;
if (count > 30)
{
return true;
}
}
return count > 30;
return count > 30;
}
std::optional<std::string> read_registry_string(const HKEY root, const char* path, const char* value)
{
HKEY key{};
if (RegOpenKeyExA(root, path, 0, KEY_READ, &key) !=
ERROR_SUCCESS)
{
return std::nullopt;
}
HKEY key{};
if (RegOpenKeyExA(root, path, 0, KEY_READ, &key) != ERROR_SUCCESS)
{
return std::nullopt;
}
char data[MAX_PATH]{};
DWORD length = sizeof(data);
const auto res = RegQueryValueExA(key, value, nullptr, nullptr, reinterpret_cast<uint8_t*>(data), &length);
char data[MAX_PATH]{};
DWORD length = sizeof(data);
const auto res = RegQueryValueExA(key, value, nullptr, nullptr, reinterpret_cast<uint8_t*>(data), &length);
if (RegCloseKey(key) != ERROR_SUCCESS)
{
return std::nullopt;
}
if (RegCloseKey(key) != ERROR_SUCCESS)
{
return std::nullopt;
}
if (res != ERROR_SUCCESS)
{
return std::nullopt;
}
if (res != ERROR_SUCCESS)
{
return std::nullopt;
}
if (length == 0)
{
return "";
}
if (length == 0)
{
return "";
}
return {std::string(data, min(length - 1, sizeof(data)))};
return {std::string(data, min(length - 1, sizeof(data)))};
}
bool test_registry()
{
const auto val = read_registry_string(HKEY_LOCAL_MACHINE, R"(SOFTWARE\Microsoft\Windows\CurrentVersion)",
"ProgramFilesDir");
if (!val)
{
return false;
}
const auto val =
read_registry_string(HKEY_LOCAL_MACHINE, R"(SOFTWARE\Microsoft\Windows\CurrentVersion)", "ProgramFilesDir");
if (!val)
{
return false;
}
return *val == "C:\\Program Files";
return *val == "C:\\Program Files";
}
void throw_exception()
{
if (do_the_task)
{
throw std::runtime_error("OK");
}
if (do_the_task)
{
throw std::runtime_error("OK");
}
}
bool test_exceptions()
{
try
{
throw_exception();
return false;
}
catch (const std::exception& e)
{
return e.what() == std::string("OK");
}
try
{
throw_exception();
return false;
}
catch (const std::exception& e)
{
return e.what() == std::string("OK");
}
}
void throw_access_violation()
{
if (do_the_task)
{
*reinterpret_cast<int*>(1) = 1;
}
if (do_the_task)
{
*reinterpret_cast<int*>(1) = 1;
}
}
bool test_access_violation_exception()
{
__try
{
throw_access_violation();
return false;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return GetExceptionCode() == STATUS_ACCESS_VIOLATION;
}
__try
{
throw_access_violation();
return false;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return GetExceptionCode() == STATUS_ACCESS_VIOLATION;
}
}
bool test_ud2_exception(void* address)
{
__try
{
static_cast<void(*)()>(address)();
return false;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return GetExceptionCode() == STATUS_ILLEGAL_INSTRUCTION;
}
__try
{
static_cast<void (*)()>(address)();
return false;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return GetExceptionCode() == STATUS_ILLEGAL_INSTRUCTION;
}
}
bool test_illegal_instruction_exception()
{
const auto address = VirtualAlloc(nullptr, 0x1000, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (!address)
{
return false;
}
const auto address = VirtualAlloc(nullptr, 0x1000, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (!address)
{
return false;
}
memcpy(address, "\x0F\x0B", 2); // ud2
memcpy(address, "\x0F\x0B", 2); // ud2
const auto res = test_ud2_exception(address);
const auto res = test_ud2_exception(address);
VirtualFree(address, 0x1000, MEM_RELEASE);
VirtualFree(address, 0x1000, MEM_RELEASE);
return res;
return res;
}
bool test_native_exceptions()
{
return test_access_violation_exception()
&& test_illegal_instruction_exception();
return test_access_violation_exception() && test_illegal_instruction_exception();
}
void print_time()
{
const auto epoch_time = std::chrono::system_clock::now().time_since_epoch();
printf("Time: %lld\n", epoch_time.count());
const auto epoch_time = std::chrono::system_clock::now().time_since_epoch();
printf("Time: %lld\n", epoch_time.count());
}
#define RUN_TEST(func, name) \
{ \
printf("Running test '" name "': "); \
const auto res = func(); \
valid &= res; \
puts(res ? "Success" : "Fail"); \
}
#define RUN_TEST(func, name) \
{ \
printf("Running test '" name "': "); \
const auto res = func(); \
valid &= res; \
puts(res ? "Success" : "Fail"); \
}
int main(int argc, const char* argv[])
{
if (argc == 2 && argv[1] == "-time"sv)
{
print_time();
return 0;
}
if (argc == 2 && argv[1] == "-time"sv)
{
print_time();
return 0;
}
bool valid = true;
bool valid = true;
RUN_TEST(test_io, "I/O")
RUN_TEST(test_dir_io, "Dir I/O")
RUN_TEST(test_registry, "Registry")
RUN_TEST(test_threads, "Threads")
RUN_TEST(test_env, "Environment")
RUN_TEST(test_exceptions, "Exceptions")
RUN_TEST(test_native_exceptions, "Native Exceptions")
RUN_TEST(test_tls, "TLS")
RUN_TEST(test_io, "I/O")
RUN_TEST(test_dir_io, "Dir I/O")
RUN_TEST(test_registry, "Registry")
RUN_TEST(test_threads, "Threads")
RUN_TEST(test_env, "Environment")
RUN_TEST(test_exceptions, "Exceptions")
RUN_TEST(test_native_exceptions, "Native Exceptions")
RUN_TEST(test_tls, "TLS")
return valid ? 0 : 1;
return valid ? 0 : 1;
}

View File

@@ -8,36 +8,35 @@
template <typename ReturnType, typename... Args>
class function_wrapper : public object
{
public:
using user_data_pointer = void*;
using c_function_type = ReturnType(Args..., user_data_pointer);
using functor_type = std::function<ReturnType(Args...)>;
public:
using user_data_pointer = void*;
using c_function_type = ReturnType(Args..., user_data_pointer);
using functor_type = std::function<ReturnType(Args...)>;
function_wrapper() = default;
function_wrapper() = default;
function_wrapper(functor_type functor)
: functor_(std::make_unique<functor_type>(std::move(functor)))
{
}
function_wrapper(functor_type functor)
: functor_(std::make_unique<functor_type>(std::move(functor)))
{
}
c_function_type* get_c_function() const
{
return +[](Args... args, user_data_pointer user_data) -> ReturnType
{
return (*static_cast<functor_type*>(user_data))(std::forward<Args>(args)...);
};
}
c_function_type* get_c_function() const
{
return +[](Args... args, user_data_pointer user_data) -> ReturnType {
return (*static_cast<functor_type*>(user_data))(std::forward<Args>(args)...);
};
}
void* get_function() const
{
return reinterpret_cast<void*>(this->get_c_function());
}
void* get_function() const
{
return reinterpret_cast<void*>(this->get_c_function());
}
user_data_pointer get_user_data() const
{
return this->functor_.get();
}
user_data_pointer get_user_data() const
{
return this->functor_.get();
}
private:
std::unique_ptr<functor_type> functor_{};
private:
std::unique_ptr<functor_type> functor_{};
};

View File

@@ -2,11 +2,11 @@
struct object
{
object() = default;
virtual ~object() = default;
object() = default;
virtual ~object() = default;
object(object&&) = default;
object(const object&) = default;
object& operator=(object&&) = default;
object& operator=(const object&) = default;
object(object&&) = default;
object(const object&) = default;
object& operator=(object&&) = default;
object& operator=(const object&) = default;
};

View File

@@ -2,7 +2,7 @@
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4505)
#pragma warning(disable : 4505)
#endif
#ifdef __clang__
@@ -25,27 +25,27 @@
namespace unicorn
{
struct unicorn_error : std::runtime_error
{
unicorn_error(const uc_err error_code)
: std::runtime_error(uc_strerror(error_code))
, code(error_code)
{
}
struct unicorn_error : std::runtime_error
{
unicorn_error(const uc_err error_code)
: std::runtime_error(uc_strerror(error_code)),
code(error_code)
{
}
uc_err code{};
};
uc_err code{};
};
inline void throw_if_unicorn_error(const uc_err error_code)
{
if (error_code != UC_ERR_OK)
{
throw unicorn_error(error_code);
}
}
inline void throw_if_unicorn_error(const uc_err error_code)
{
if (error_code != UC_ERR_OK)
{
throw unicorn_error(error_code);
}
}
inline void uce(const uc_err error_code)
{
throw_if_unicorn_error(error_code);
}
inline void uce(const uc_err error_code)
{
throw_if_unicorn_error(error_code);
}
}

View File

@@ -4,74 +4,73 @@
namespace unicorn
{
class unicorn_hook
{
public:
unicorn_hook() = default;
class unicorn_hook
{
public:
unicorn_hook() = default;
unicorn_hook(uc_engine* uc)
: unicorn_hook(uc, {})
{
}
unicorn_hook(uc_engine* uc)
: unicorn_hook(uc, {})
{
}
unicorn_hook(uc_engine* uc, const uc_hook hook)
: uc_(uc)
, hook_(hook)
{
}
unicorn_hook(uc_engine* uc, const uc_hook hook)
: uc_(uc),
hook_(hook)
{
}
~unicorn_hook()
{
release();
}
~unicorn_hook()
{
release();
}
unicorn_hook(const unicorn_hook&) = delete;
unicorn_hook& operator=(const unicorn_hook&) = delete;
unicorn_hook(const unicorn_hook&) = delete;
unicorn_hook& operator=(const unicorn_hook&) = delete;
unicorn_hook(unicorn_hook&& obj) noexcept
{
this->operator=(std::move(obj));
}
unicorn_hook(unicorn_hook&& obj) noexcept
{
this->operator=(std::move(obj));
}
uc_hook* make_reference()
{
if (!this->uc_)
{
throw std::runtime_error("Cannot make reference on default constructed hook");
}
uc_hook* make_reference()
{
if (!this->uc_)
{
throw std::runtime_error("Cannot make reference on default constructed hook");
}
this->release();
return &this->hook_;
}
this->release();
return &this->hook_;
}
unicorn_hook& operator=(unicorn_hook&& obj) noexcept
{
if (this != &obj)
{
this->release();
unicorn_hook& operator=(unicorn_hook&& obj) noexcept
{
if (this != &obj)
{
this->release();
this->uc_ = obj.uc_;
this->hook_ = obj.hook_;
this->uc_ = obj.uc_;
this->hook_ = obj.hook_;
obj.hook_ = {};
obj.uc_ = {};
}
obj.hook_ = {};
obj.uc_ = {};
}
return *this;
}
return *this;
}
void release()
{
if (this->hook_ && this->uc_)
{
uc_hook_del(this->uc_, this->hook_);
this->hook_ = {};
}
}
void release()
{
if (this->hook_ && this->uc_)
{
uc_hook_del(this->uc_, this->hook_);
this->hook_ = {};
}
}
private:
uc_engine* uc_{};
uc_hook hook_{};
};
private:
uc_engine* uc_{};
uc_hook hook_{};
};
}

View File

@@ -6,62 +6,61 @@
namespace unicorn
{
class unicorn_memory_regions
{
public:
unicorn_memory_regions(uc_engine* uc)
{
uce(uc_mem_regions(uc, &this->regions_, &this->count_));
}
class unicorn_memory_regions
{
public:
unicorn_memory_regions(uc_engine* uc)
{
uce(uc_mem_regions(uc, &this->regions_, &this->count_));
}
~unicorn_memory_regions()
{
this->release();
}
~unicorn_memory_regions()
{
this->release();
}
unicorn_memory_regions(const unicorn_memory_regions&) = delete;
unicorn_memory_regions& operator=(const unicorn_memory_regions&) = delete;
unicorn_memory_regions(const unicorn_memory_regions&) = delete;
unicorn_memory_regions& operator=(const unicorn_memory_regions&) = delete;
unicorn_memory_regions(unicorn_memory_regions&& obj) noexcept
{
this->operator=(std::move(obj));
}
unicorn_memory_regions(unicorn_memory_regions&& obj) noexcept
{
this->operator=(std::move(obj));
}
unicorn_memory_regions& operator=(unicorn_memory_regions&& obj) noexcept
{
if (this != &obj)
{
this->release();
unicorn_memory_regions& operator=(unicorn_memory_regions&& obj) noexcept
{
if (this != &obj)
{
this->release();
this->count_ = obj.count_;
this->regions_ = obj.regions_;
this->count_ = obj.count_;
this->regions_ = obj.regions_;
obj.count_ = {};
obj.regions_ = nullptr;
}
obj.count_ = {};
obj.regions_ = nullptr;
}
return *this;
}
return *this;
}
std::span<uc_mem_region> get_span() const
{
return {this->regions_, this->count_};
}
std::span<uc_mem_region> get_span() const
{
return {this->regions_, this->count_};
}
private:
uint32_t count_{};
uc_mem_region* regions_{};
private:
uint32_t count_{};
uc_mem_region* regions_{};
void release()
{
if (this->regions_)
{
uc_free(regions_);
}
void release()
{
if (this->regions_)
{
uc_free(regions_);
}
this->count_ = {};
this->regions_ = nullptr;
}
};
this->count_ = {};
this->regions_ = nullptr;
}
};
}

File diff suppressed because it is too large Load Diff

View File

@@ -12,6 +12,6 @@
namespace unicorn
{
UNICORN_EMULATOR_DLL_STORAGE
std::unique_ptr<x64_emulator> create_x64_emulator();
UNICORN_EMULATOR_DLL_STORAGE
std::unique_ptr<x64_emulator> create_x64_emulator();
}

View File

@@ -2,46 +2,46 @@
namespace test
{
TEST(EmulationTest, BasicEmulationWorks)
{
auto emu = create_sample_emulator();
emu.start();
TEST(EmulationTest, BasicEmulationWorks)
{
auto emu = create_sample_emulator();
emu.start();
ASSERT_TERMINATED_SUCCESSFULLY(emu);
}
ASSERT_TERMINATED_SUCCESSFULLY(emu);
}
TEST(EmulationTest, CountedEmulationWorks)
{
constexpr auto count = 200000;
TEST(EmulationTest, CountedEmulationWorks)
{
constexpr auto count = 200000;
auto emu = create_sample_emulator();
emu.start({}, count);
auto emu = create_sample_emulator();
emu.start({}, count);
ASSERT_EQ(emu.process().executed_instructions, count);
}
ASSERT_EQ(emu.process().executed_instructions, count);
}
TEST(EmulationTest, CountedEmulationIsAccurate)
{
auto emu = create_sample_emulator();
emu.start();
TEST(EmulationTest, CountedEmulationIsAccurate)
{
auto emu = create_sample_emulator();
emu.start();
ASSERT_TERMINATED_SUCCESSFULLY(emu);
ASSERT_TERMINATED_SUCCESSFULLY(emu);
const auto executedInstructions = emu.process().executed_instructions;
const auto executedInstructions = emu.process().executed_instructions;
auto new_emu = create_sample_emulator();
auto new_emu = create_sample_emulator();
constexpr auto offset = 1;
const auto instructionsToExecute = executedInstructions - offset;
constexpr auto offset = 1;
const auto instructionsToExecute = executedInstructions - offset;
new_emu.start({}, instructionsToExecute);
new_emu.start({}, instructionsToExecute);
ASSERT_EQ(new_emu.process().executed_instructions, instructionsToExecute);
ASSERT_NOT_TERMINATED(new_emu);
ASSERT_EQ(new_emu.process().executed_instructions, instructionsToExecute);
ASSERT_NOT_TERMINATED(new_emu);
new_emu.start({}, offset);
new_emu.start({}, offset);
ASSERT_TERMINATED_SUCCESSFULLY(new_emu);
ASSERT_EQ(new_emu.process().executed_instructions, executedInstructions);
}
ASSERT_TERMINATED_SUCCESSFULLY(new_emu);
ASSERT_EQ(new_emu.process().executed_instructions, executedInstructions);
}
}

View File

@@ -3,37 +3,36 @@
#include <gtest/gtest.h>
#include <windows_emulator.hpp>
#define ASSERT_NOT_TERMINATED(win_emu) \
do { \
ASSERT_FALSE((win_emu).process().exit_status.has_value()); \
} while(false)
#define ASSERT_NOT_TERMINATED(win_emu) \
do \
{ \
ASSERT_FALSE((win_emu).process().exit_status.has_value()); \
} while (false)
#define ASSERT_TERMINATED_WITH_STATUS(win_emu, status) \
do \
{ \
ASSERT_TRUE((win_emu).process().exit_status.has_value()); \
ASSERT_EQ(*(win_emu).process().exit_status, status); \
} while (false)
#define ASSERT_TERMINATED_WITH_STATUS(win_emu, status) \
do { \
ASSERT_TRUE((win_emu).process().exit_status.has_value()); \
ASSERT_EQ(*(win_emu).process().exit_status, status); \
} while(false)
#define ASSERT_TERMINATED_SUCCESSFULLY(win_emu) \
ASSERT_TERMINATED_WITH_STATUS(win_emu, STATUS_SUCCESS)
#define ASSERT_TERMINATED_SUCCESSFULLY(win_emu) ASSERT_TERMINATED_WITH_STATUS(win_emu, STATUS_SUCCESS)
namespace test
{
inline windows_emulator create_sample_emulator(emulator_settings settings)
{
settings.application = "./test-sample.exe";
return windows_emulator{std::move(settings)};
}
inline windows_emulator create_sample_emulator(emulator_settings settings)
{
settings.application = "./test-sample.exe";
return windows_emulator{std::move(settings)};
}
inline windows_emulator create_sample_emulator()
{
emulator_settings settings
{
.disable_logging = true,
.use_relative_time = true,
};
inline windows_emulator create_sample_emulator()
{
emulator_settings settings{
.disable_logging = true,
.use_relative_time = true,
};
return create_sample_emulator(std::move(settings));
}
return create_sample_emulator(std::move(settings));
}
}

View File

@@ -2,6 +2,6 @@
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View File

@@ -2,77 +2,77 @@
namespace test
{
TEST(SerializationTest, SerializedDataIsReproducible)
{
auto emu1 = create_sample_emulator();
emu1.start();
TEST(SerializationTest, SerializedDataIsReproducible)
{
auto emu1 = create_sample_emulator();
emu1.start();
ASSERT_TERMINATED_SUCCESSFULLY(emu1);
ASSERT_TERMINATED_SUCCESSFULLY(emu1);
utils::buffer_serializer serializer1{};
emu1.serialize(serializer1);
utils::buffer_serializer serializer1{};
emu1.serialize(serializer1);
utils::buffer_deserializer deserializer{serializer1.get_buffer()};
utils::buffer_deserializer deserializer{serializer1.get_buffer()};
windows_emulator new_emu{};
new_emu.deserialize(deserializer);
windows_emulator new_emu{};
new_emu.deserialize(deserializer);
utils::buffer_serializer serializer2{};
new_emu.serialize(serializer2);
utils::buffer_serializer serializer2{};
new_emu.serialize(serializer2);
auto buffer1 = serializer1.move_buffer();
auto buffer2 = serializer2.move_buffer();
auto buffer1 = serializer1.move_buffer();
auto buffer2 = serializer2.move_buffer();
ASSERT_EQ(serializer1.get_buffer(), serializer2.get_buffer());
}
ASSERT_EQ(serializer1.get_buffer(), serializer2.get_buffer());
}
TEST(SerializationTest, EmulationIsReproducible)
{
auto emu1 = create_sample_emulator();
emu1.start();
TEST(SerializationTest, EmulationIsReproducible)
{
auto emu1 = create_sample_emulator();
emu1.start();
ASSERT_TERMINATED_SUCCESSFULLY(emu1);
ASSERT_TERMINATED_SUCCESSFULLY(emu1);
utils::buffer_serializer serializer1{};
emu1.serialize(serializer1);
utils::buffer_serializer serializer1{};
emu1.serialize(serializer1);
auto emu2 = create_sample_emulator();
emu2.start();
auto emu2 = create_sample_emulator();
emu2.start();
ASSERT_TERMINATED_SUCCESSFULLY(emu2);
ASSERT_TERMINATED_SUCCESSFULLY(emu2);
utils::buffer_serializer serializer2{};
emu2.serialize(serializer2);
utils::buffer_serializer serializer2{};
emu2.serialize(serializer2);
ASSERT_EQ(serializer1.get_buffer(), serializer2.get_buffer());
}
ASSERT_EQ(serializer1.get_buffer(), serializer2.get_buffer());
}
TEST(SerializationTest, DeserializedEmulatorBehavesLikeSource)
{
auto emu = create_sample_emulator();
emu.start({}, 100);
TEST(SerializationTest, DeserializedEmulatorBehavesLikeSource)
{
auto emu = create_sample_emulator();
emu.start({}, 100);
utils::buffer_serializer serializer{};
emu.serialize(serializer);
utils::buffer_serializer serializer{};
emu.serialize(serializer);
utils::buffer_deserializer deserializer{serializer.get_buffer()};
utils::buffer_deserializer deserializer{serializer.get_buffer()};
windows_emulator new_emu{};
new_emu.log.disable_output(true);
new_emu.deserialize(deserializer);
windows_emulator new_emu{};
new_emu.log.disable_output(true);
new_emu.deserialize(deserializer);
new_emu.start();
ASSERT_TERMINATED_SUCCESSFULLY(new_emu);
new_emu.start();
ASSERT_TERMINATED_SUCCESSFULLY(new_emu);
emu.start();
ASSERT_TERMINATED_SUCCESSFULLY(emu);
emu.start();
ASSERT_TERMINATED_SUCCESSFULLY(emu);
utils::buffer_serializer serializer1{};
utils::buffer_serializer serializer2{};
utils::buffer_serializer serializer1{};
utils::buffer_serializer serializer2{};
emu.serialize(serializer1);
new_emu.serialize(serializer2);
emu.serialize(serializer1);
new_emu.serialize(serializer2);
ASSERT_EQ(serializer1.get_buffer(), serializer2.get_buffer());
}
ASSERT_EQ(serializer1.get_buffer(), serializer2.get_buffer());
}
}

View File

@@ -2,44 +2,41 @@
namespace test
{
TEST(TimeTest, SystemTimeIsAccurate)
{
std::string output_buffer{};
TEST(TimeTest, SystemTimeIsAccurate)
{
std::string output_buffer{};
const emulator_settings settings{
.arguments = {u"-time"},
.stdout_callback = [&output_buffer](const std::string_view data)
{
output_buffer.append(data);
},
.disable_logging = true,
.use_relative_time = false,
};
const emulator_settings settings{
.arguments = {u"-time"},
.stdout_callback = [&output_buffer](const std::string_view data) { output_buffer.append(data); },
.disable_logging = true,
.use_relative_time = false,
};
auto emu = create_sample_emulator(settings);
emu.start();
auto emu = create_sample_emulator(settings);
emu.start();
constexpr auto prefix = "Time: "sv;
constexpr auto prefix = "Time: "sv;
ASSERT_TERMINATED_SUCCESSFULLY(emu);
ASSERT_TRUE(output_buffer.starts_with(prefix));
ASSERT_TERMINATED_SUCCESSFULLY(emu);
ASSERT_TRUE(output_buffer.starts_with(prefix));
output_buffer = output_buffer.substr(prefix.size());
while (!output_buffer.empty() && (output_buffer.back() == '\n' || output_buffer.back() == '\r'))
{
output_buffer.pop_back();
}
output_buffer = output_buffer.substr(prefix.size());
while (!output_buffer.empty() && (output_buffer.back() == '\n' || output_buffer.back() == '\r'))
{
output_buffer.pop_back();
}
const auto time = strtoll(output_buffer.c_str(), nullptr, 10);
const auto time = strtoll(output_buffer.c_str(), nullptr, 10);
using time_point = std::chrono::system_clock::time_point;
using time_point = std::chrono::system_clock::time_point;
const time_point::duration time_duration(time);
const time_point tp(time_duration);
const time_point::duration time_duration(time);
const time_point tp(time_duration);
const auto now = std::chrono::system_clock::now();
const auto diff = now - tp;
const auto now = std::chrono::system_clock::now();
const auto diff = now - tp;
ASSERT_LE(diff, std::chrono::hours(1));
}
ASSERT_LE(diff, std::chrono::hours(1));
}
}

View File

@@ -3,149 +3,149 @@
namespace context_frame
{
void restore(x64_emulator& emu, const CONTEXT64& context)
{
if (context.ContextFlags & CONTEXT_DEBUG_REGISTERS_64)
{
emu.reg(x64_register::dr0, context.Dr0);
emu.reg(x64_register::dr1, context.Dr1);
emu.reg(x64_register::dr2, context.Dr2);
emu.reg(x64_register::dr3, context.Dr3);
emu.reg(x64_register::dr6, context.Dr6);
emu.reg(x64_register::dr7, context.Dr7);
}
void restore(x64_emulator& emu, const CONTEXT64& context)
{
if (context.ContextFlags & CONTEXT_DEBUG_REGISTERS_64)
{
emu.reg(x64_register::dr0, context.Dr0);
emu.reg(x64_register::dr1, context.Dr1);
emu.reg(x64_register::dr2, context.Dr2);
emu.reg(x64_register::dr3, context.Dr3);
emu.reg(x64_register::dr6, context.Dr6);
emu.reg(x64_register::dr7, context.Dr7);
}
if (context.ContextFlags & CONTEXT_CONTROL_64)
{
emu.reg<uint16_t>(x64_register::ss, context.SegSs);
emu.reg<uint16_t>(x64_register::cs, context.SegCs);
if (context.ContextFlags & CONTEXT_CONTROL_64)
{
emu.reg<uint16_t>(x64_register::ss, context.SegSs);
emu.reg<uint16_t>(x64_register::cs, context.SegCs);
emu.reg(x64_register::rip, context.Rip);
emu.reg(x64_register::rsp, context.Rsp);
emu.reg(x64_register::rip, context.Rip);
emu.reg(x64_register::rsp, context.Rsp);
emu.reg<uint32_t>(x64_register::eflags, context.EFlags);
}
emu.reg<uint32_t>(x64_register::eflags, context.EFlags);
}
if (context.ContextFlags & CONTEXT_INTEGER_64)
{
emu.reg(x64_register::rax, context.Rax);
emu.reg(x64_register::rbx, context.Rbx);
emu.reg(x64_register::rcx, context.Rcx);
emu.reg(x64_register::rdx, context.Rdx);
emu.reg(x64_register::rbp, context.Rbp);
emu.reg(x64_register::rsi, context.Rsi);
emu.reg(x64_register::rdi, context.Rdi);
emu.reg(x64_register::r8, context.R8);
emu.reg(x64_register::r9, context.R9);
emu.reg(x64_register::r10, context.R10);
emu.reg(x64_register::r11, context.R11);
emu.reg(x64_register::r12, context.R12);
emu.reg(x64_register::r13, context.R13);
emu.reg(x64_register::r14, context.R14);
emu.reg(x64_register::r15, context.R15);
}
if (context.ContextFlags & CONTEXT_INTEGER_64)
{
emu.reg(x64_register::rax, context.Rax);
emu.reg(x64_register::rbx, context.Rbx);
emu.reg(x64_register::rcx, context.Rcx);
emu.reg(x64_register::rdx, context.Rdx);
emu.reg(x64_register::rbp, context.Rbp);
emu.reg(x64_register::rsi, context.Rsi);
emu.reg(x64_register::rdi, context.Rdi);
emu.reg(x64_register::r8, context.R8);
emu.reg(x64_register::r9, context.R9);
emu.reg(x64_register::r10, context.R10);
emu.reg(x64_register::r11, context.R11);
emu.reg(x64_register::r12, context.R12);
emu.reg(x64_register::r13, context.R13);
emu.reg(x64_register::r14, context.R14);
emu.reg(x64_register::r15, context.R15);
}
/*if (context.ContextFlags & CONTEXT_SEGMENTS)
{
emu.reg<uint16_t>(x64_register::ds, context.SegDs);
emu.reg<uint16_t>(x64_register::es, context.SegEs);
emu.reg<uint16_t>(x64_register::fs, context.SegFs);
emu.reg<uint16_t>(x64_register::gs, context.SegGs);
}*/
/*if (context.ContextFlags & CONTEXT_SEGMENTS)
{
emu.reg<uint16_t>(x64_register::ds, context.SegDs);
emu.reg<uint16_t>(x64_register::es, context.SegEs);
emu.reg<uint16_t>(x64_register::fs, context.SegFs);
emu.reg<uint16_t>(x64_register::gs, context.SegGs);
}*/
if (context.ContextFlags & CONTEXT_FLOATING_POINT_64)
{
emu.reg<uint16_t>(x64_register::fpcw, context.FltSave.ControlWord);
emu.reg<uint16_t>(x64_register::fpsw, context.FltSave.StatusWord);
emu.reg<uint16_t>(x64_register::fptag, context.FltSave.TagWord);
if (context.ContextFlags & CONTEXT_FLOATING_POINT_64)
{
emu.reg<uint16_t>(x64_register::fpcw, context.FltSave.ControlWord);
emu.reg<uint16_t>(x64_register::fpsw, context.FltSave.StatusWord);
emu.reg<uint16_t>(x64_register::fptag, context.FltSave.TagWord);
for (int i = 0; i < 8; i++)
{
const auto reg = static_cast<x64_register>(static_cast<int>(x64_register::st0) + i);
emu.reg<M128A>(reg, context.FltSave.FloatRegisters[i]);
}
}
for (int i = 0; i < 8; i++)
{
const auto reg = static_cast<x64_register>(static_cast<int>(x64_register::st0) + i);
emu.reg<M128A>(reg, context.FltSave.FloatRegisters[i]);
}
}
if (context.ContextFlags & CONTEXT_XSTATE_64)
{
emu.reg<uint32_t>(x64_register::mxcsr, context.MxCsr);
if (context.ContextFlags & CONTEXT_XSTATE_64)
{
emu.reg<uint32_t>(x64_register::mxcsr, context.MxCsr);
for (int i = 0; i < 16; i++)
{
const auto reg = static_cast<x64_register>(static_cast<int>(x64_register::xmm0) + i);
emu.reg<M128A>(reg, (&context.Xmm0)[i]);
}
}
}
for (int i = 0; i < 16; i++)
{
const auto reg = static_cast<x64_register>(static_cast<int>(x64_register::xmm0) + i);
emu.reg<M128A>(reg, (&context.Xmm0)[i]);
}
}
}
void save(x64_emulator& emu, CONTEXT64& context)
{
if (context.ContextFlags & CONTEXT_DEBUG_REGISTERS_64)
{
context.Dr0 = emu.reg(x64_register::dr0);
context.Dr1 = emu.reg(x64_register::dr1);
context.Dr2 = emu.reg(x64_register::dr2);
context.Dr3 = emu.reg(x64_register::dr3);
context.Dr6 = emu.reg(x64_register::dr6);
context.Dr7 = emu.reg(x64_register::dr7);
}
void save(x64_emulator& emu, CONTEXT64& context)
{
if (context.ContextFlags & CONTEXT_DEBUG_REGISTERS_64)
{
context.Dr0 = emu.reg(x64_register::dr0);
context.Dr1 = emu.reg(x64_register::dr1);
context.Dr2 = emu.reg(x64_register::dr2);
context.Dr3 = emu.reg(x64_register::dr3);
context.Dr6 = emu.reg(x64_register::dr6);
context.Dr7 = emu.reg(x64_register::dr7);
}
if (context.ContextFlags & CONTEXT_CONTROL_64)
{
context.SegSs = emu.reg<uint16_t>(x64_register::ss);
context.SegCs = emu.reg<uint16_t>(x64_register::cs);
context.Rip = emu.reg(x64_register::rip);
context.Rsp = emu.reg(x64_register::rsp);
context.EFlags = emu.reg<uint32_t>(x64_register::eflags);
}
if (context.ContextFlags & CONTEXT_CONTROL_64)
{
context.SegSs = emu.reg<uint16_t>(x64_register::ss);
context.SegCs = emu.reg<uint16_t>(x64_register::cs);
context.Rip = emu.reg(x64_register::rip);
context.Rsp = emu.reg(x64_register::rsp);
context.EFlags = emu.reg<uint32_t>(x64_register::eflags);
}
if (context.ContextFlags & CONTEXT_INTEGER_64)
{
context.Rax = emu.reg(x64_register::rax);
context.Rbx = emu.reg(x64_register::rbx);
context.Rcx = emu.reg(x64_register::rcx);
context.Rdx = emu.reg(x64_register::rdx);
context.Rbp = emu.reg(x64_register::rbp);
context.Rsi = emu.reg(x64_register::rsi);
context.Rdi = emu.reg(x64_register::rdi);
context.R8 = emu.reg(x64_register::r8);
context.R9 = emu.reg(x64_register::r9);
context.R10 = emu.reg(x64_register::r10);
context.R11 = emu.reg(x64_register::r11);
context.R12 = emu.reg(x64_register::r12);
context.R13 = emu.reg(x64_register::r13);
context.R14 = emu.reg(x64_register::r14);
context.R15 = emu.reg(x64_register::r15);
}
if (context.ContextFlags & CONTEXT_INTEGER_64)
{
context.Rax = emu.reg(x64_register::rax);
context.Rbx = emu.reg(x64_register::rbx);
context.Rcx = emu.reg(x64_register::rcx);
context.Rdx = emu.reg(x64_register::rdx);
context.Rbp = emu.reg(x64_register::rbp);
context.Rsi = emu.reg(x64_register::rsi);
context.Rdi = emu.reg(x64_register::rdi);
context.R8 = emu.reg(x64_register::r8);
context.R9 = emu.reg(x64_register::r9);
context.R10 = emu.reg(x64_register::r10);
context.R11 = emu.reg(x64_register::r11);
context.R12 = emu.reg(x64_register::r12);
context.R13 = emu.reg(x64_register::r13);
context.R14 = emu.reg(x64_register::r14);
context.R15 = emu.reg(x64_register::r15);
}
if (context.ContextFlags & CONTEXT_SEGMENTS_64)
{
context.SegDs = emu.reg<uint16_t>(x64_register::ds);
context.SegEs = emu.reg<uint16_t>(x64_register::es);
context.SegFs = emu.reg<uint16_t>(x64_register::fs);
context.SegGs = emu.reg<uint16_t>(x64_register::gs);
}
if (context.ContextFlags & CONTEXT_SEGMENTS_64)
{
context.SegDs = emu.reg<uint16_t>(x64_register::ds);
context.SegEs = emu.reg<uint16_t>(x64_register::es);
context.SegFs = emu.reg<uint16_t>(x64_register::fs);
context.SegGs = emu.reg<uint16_t>(x64_register::gs);
}
if (context.ContextFlags & CONTEXT_FLOATING_POINT_64)
{
context.FltSave.ControlWord = emu.reg<uint16_t>(x64_register::fpcw);
context.FltSave.StatusWord = emu.reg<uint16_t>(x64_register::fpsw);
context.FltSave.TagWord = static_cast<BYTE>(emu.reg<uint16_t>(x64_register::fptag));
for (int i = 0; i < 8; i++)
{
const auto reg = static_cast<x64_register>(static_cast<int>(x64_register::st0) + i);
context.FltSave.FloatRegisters[i] = emu.reg<M128A>(reg);
}
}
if (context.ContextFlags & CONTEXT_FLOATING_POINT_64)
{
context.FltSave.ControlWord = emu.reg<uint16_t>(x64_register::fpcw);
context.FltSave.StatusWord = emu.reg<uint16_t>(x64_register::fpsw);
context.FltSave.TagWord = static_cast<BYTE>(emu.reg<uint16_t>(x64_register::fptag));
for (int i = 0; i < 8; i++)
{
const auto reg = static_cast<x64_register>(static_cast<int>(x64_register::st0) + i);
context.FltSave.FloatRegisters[i] = emu.reg<M128A>(reg);
}
}
if (context.ContextFlags & CONTEXT_XSTATE_64)
{
context.MxCsr = emu.reg<uint32_t>(x64_register::mxcsr);
for (int i = 0; i < 16; i++)
{
const auto reg = static_cast<x64_register>(static_cast<int>(x64_register::xmm0) + i);
(&context.Xmm0)[i] = emu.reg<M128A>(reg);
}
}
}
if (context.ContextFlags & CONTEXT_XSTATE_64)
{
context.MxCsr = emu.reg<uint32_t>(x64_register::mxcsr);
for (int i = 0; i < 16; i++)
{
const auto reg = static_cast<x64_register>(static_cast<int>(x64_register::xmm0) + i);
(&context.Xmm0)[i] = emu.reg<M128A>(reg);
}
}
}
}

View File

@@ -3,6 +3,6 @@
namespace context_frame
{
void save(x64_emulator& emu, CONTEXT64& context);
void restore(x64_emulator& emu, const CONTEXT64& context);
void save(x64_emulator& emu, CONTEXT64& context);
void restore(x64_emulator& emu, const CONTEXT64& context);
}

View File

@@ -3,137 +3,134 @@
#include <utils/finally.hpp>
extern "C" {
extern "C"
{
#include <gdbstub.h>
}
namespace
{
gdb_action_t map_gdb_action(const gdb_action action)
{
switch (action)
{
case gdb_action::none:
return ACT_NONE;
case gdb_action::resume:
return ACT_RESUME;
case gdb_action::shutdown:
return ACT_SHUTDOWN;
}
gdb_action_t map_gdb_action(const gdb_action action)
{
switch (action)
{
case gdb_action::none:
return ACT_NONE;
case gdb_action::resume:
return ACT_RESUME;
case gdb_action::shutdown:
return ACT_SHUTDOWN;
}
throw std::runtime_error("Bad action");
}
throw std::runtime_error("Bad action");
}
breakpoint_type map_breakpoint_type(const bp_type_t type)
{
switch (type)
{
case BP_SOFTWARE:
return breakpoint_type::software;
case BP_HARDWARE_EXEC:
return breakpoint_type::hardware_exec;
case BP_HARDWARE_WRITE:
return breakpoint_type::hardware_write;
case BP_HARDWARE_READ:
return breakpoint_type::hardware_read;
case BP_HARDWARE_READ_WRITE:
return breakpoint_type::hardware_read_write;
}
breakpoint_type map_breakpoint_type(const bp_type_t type)
{
switch (type)
{
case BP_SOFTWARE:
return breakpoint_type::software;
case BP_HARDWARE_EXEC:
return breakpoint_type::hardware_exec;
case BP_HARDWARE_WRITE:
return breakpoint_type::hardware_write;
case BP_HARDWARE_READ:
return breakpoint_type::hardware_read;
case BP_HARDWARE_READ_WRITE:
return breakpoint_type::hardware_read_write;
}
throw std::runtime_error("Bad breakpoint type");
}
throw std::runtime_error("Bad breakpoint type");
}
gdb_stub_handler& get_handler(void* args)
{
return *static_cast<gdb_stub_handler*>(args);
}
gdb_stub_handler& get_handler(void* args)
{
return *static_cast<gdb_stub_handler*>(args);
}
gdb_action_t cont(void* args)
{
return map_gdb_action(get_handler(args).cont());
}
gdb_action_t cont(void* args)
{
return map_gdb_action(get_handler(args).cont());
}
gdb_action_t stepi(void* args)
{
return map_gdb_action(get_handler(args).stepi());
}
gdb_action_t stepi(void* args)
{
return map_gdb_action(get_handler(args).stepi());
}
int read_reg(void* args, const int regno, size_t* value)
{
return get_handler(args).read_reg(regno, value) ? 0 : 1;
}
int read_reg(void* args, const int regno, size_t* value)
{
return get_handler(args).read_reg(regno, value) ? 0 : 1;
}
int write_reg(void* args, const int regno, const size_t value)
{
return get_handler(args).write_reg(regno, value) ? 0 : 1;
}
int write_reg(void* args, const int regno, const size_t value)
{
return get_handler(args).write_reg(regno, value) ? 0 : 1;
}
int read_mem(void* args, const size_t addr, const size_t len, void* val)
{
return get_handler(args).read_mem(addr, len, val) ? 0 : 1;
}
int read_mem(void* args, const size_t addr, const size_t len, void* val)
{
return get_handler(args).read_mem(addr, len, val) ? 0 : 1;
}
int write_mem(void* args, const size_t addr, const size_t len, void* val)
{
return get_handler(args).write_mem(addr, len, val) ? 0 : 1;
}
int write_mem(void* args, const size_t addr, const size_t len, void* val)
{
return get_handler(args).write_mem(addr, len, val) ? 0 : 1;
}
bool set_bp(void* args, const size_t addr, const bp_type_t type, const size_t size)
{
return get_handler(args).set_bp(map_breakpoint_type(type), addr, size);
}
bool set_bp(void* args, const size_t addr, const bp_type_t type, const size_t size)
{
return get_handler(args).set_bp(map_breakpoint_type(type), addr, size);
}
bool del_bp(void* args, const size_t addr, const bp_type_t type, const size_t size)
{
return get_handler(args).del_bp(map_breakpoint_type(type), addr, size);
}
bool del_bp(void* args, const size_t addr, const bp_type_t type, const size_t size)
{
return get_handler(args).del_bp(map_breakpoint_type(type), addr, size);
}
void on_interrupt(void* args)
{
get_handler(args).on_interrupt();
}
void on_interrupt(void* args)
{
get_handler(args).on_interrupt();
}
target_ops get_target_ops()
{
target_ops ops{};
target_ops get_target_ops()
{
target_ops ops{};
ops.cont = cont;
ops.stepi = stepi;
ops.read_reg = read_reg;
ops.write_reg = write_reg;
ops.read_mem = read_mem;
ops.write_mem = write_mem;
ops.set_bp = set_bp;
ops.del_bp = del_bp;
ops.on_interrupt = on_interrupt;
ops.cont = cont;
ops.stepi = stepi;
ops.read_reg = read_reg;
ops.write_reg = write_reg;
ops.read_mem = read_mem;
ops.write_mem = write_mem;
ops.set_bp = set_bp;
ops.del_bp = del_bp;
ops.on_interrupt = on_interrupt;
return ops;
}
return ops;
}
}
bool run_gdb_stub(gdb_stub_handler& handler, std::string target_description, const size_t register_count,
std::string bind_address)
{
const arch_info_t info
{
target_description.data(),
static_cast<int>(register_count),
sizeof(uint64_t),
};
const arch_info_t info{
target_description.data(),
static_cast<int>(register_count),
sizeof(uint64_t),
};
auto ops = get_target_ops();
auto ops = get_target_ops();
gdbstub_t stub{};
gdbstub_t stub{};
if (!gdbstub_init(&stub, &ops, info, bind_address.data()))
{
return false;
}
if (!gdbstub_init(&stub, &ops, info, bind_address.data()))
{
return false;
}
const auto _ = utils::finally([&]
{
gdbstub_close(&stub);
});
const auto _ = utils::finally([&] { gdbstub_close(&stub); });
return gdbstub_run(&stub, &handler);
return gdbstub_run(&stub, &handler);
}

View File

@@ -2,37 +2,37 @@
enum class gdb_action : uint8_t
{
none,
resume,
shutdown,
none,
resume,
shutdown,
};
enum class breakpoint_type : uint8_t
{
software,
hardware_exec,
hardware_write,
hardware_read,
hardware_read_write,
software,
hardware_exec,
hardware_write,
hardware_read,
hardware_read_write,
};
struct gdb_stub_handler
{
virtual ~gdb_stub_handler() = default;
virtual ~gdb_stub_handler() = default;
virtual gdb_action cont() = 0;
virtual gdb_action stepi() = 0;
virtual gdb_action cont() = 0;
virtual gdb_action stepi() = 0;
virtual bool read_reg(int regno, size_t* value) = 0;
virtual bool write_reg(int regno, size_t value) = 0;
virtual bool read_reg(int regno, size_t* value) = 0;
virtual bool write_reg(int regno, size_t value) = 0;
virtual bool read_mem(size_t addr, size_t len, void* val) = 0;
virtual bool write_mem(size_t addr, size_t len, void* val) = 0;
virtual bool read_mem(size_t addr, size_t len, void* val) = 0;
virtual bool write_mem(size_t addr, size_t len, void* val) = 0;
virtual bool set_bp(breakpoint_type type, size_t addr, size_t size) = 0;
virtual bool del_bp(breakpoint_type type, size_t addr, size_t size) = 0;
virtual bool set_bp(breakpoint_type type, size_t addr, size_t size) = 0;
virtual bool del_bp(breakpoint_type type, size_t addr, size_t size) = 0;
virtual void on_interrupt() = 0;
virtual void on_interrupt() = 0;
};
bool run_gdb_stub(gdb_stub_handler& handler, std::string target_description, size_t register_count,

View File

@@ -5,41 +5,41 @@
class win_x64_gdb_stub_handler : public x64_gdb_stub_handler
{
public:
win_x64_gdb_stub_handler(windows_emulator& win_emu)
: x64_gdb_stub_handler(win_emu.emu())
, win_emu_(&win_emu)
{
}
public:
win_x64_gdb_stub_handler(windows_emulator& win_emu)
: x64_gdb_stub_handler(win_emu.emu()),
win_emu_(&win_emu)
{
}
gdb_action cont() override
{
try
{
this->win_emu_->start();
}
catch (const std::exception& e)
{
puts(e.what());
}
gdb_action cont() override
{
try
{
this->win_emu_->start();
}
catch (const std::exception& e)
{
puts(e.what());
}
return gdb_action::resume;
}
return gdb_action::resume;
}
gdb_action stepi() override
{
try
{
this->win_emu_->start({}, 1);
}
catch (const std::exception& e)
{
puts(e.what());
}
gdb_action stepi() override
{
try
{
this->win_emu_->start({}, 1);
}
catch (const std::exception& e)
{
puts(e.what());
}
return gdb_action::resume;
}
return gdb_action::resume;
}
private:
windows_emulator* win_emu_{};
private:
windows_emulator* win_emu_{};
};

View File

@@ -4,212 +4,194 @@
#include "scoped_hook.hpp"
inline std::vector gdb_registers{
x64_register::rax,
x64_register::rbx,
x64_register::rcx,
x64_register::rdx,
x64_register::rsi,
x64_register::rdi,
x64_register::rbp,
x64_register::rsp,
x64_register::r8,
x64_register::r9,
x64_register::r10,
x64_register::r11,
x64_register::r12,
x64_register::r13,
x64_register::r14,
x64_register::r15,
x64_register::rip,
x64_register::rflags,
/*x64_register::cs,
x64_register::ss,
x64_register::ds,
x64_register::es,
x64_register::fs,
x64_register::gs,*/
x64_register::rax, x64_register::rbx, x64_register::rcx, x64_register::rdx, x64_register::rsi, x64_register::rdi,
x64_register::rbp, x64_register::rsp, x64_register::r8, x64_register::r9, x64_register::r10, x64_register::r11,
x64_register::r12, x64_register::r13, x64_register::r14, x64_register::r15, x64_register::rip, x64_register::rflags,
/*x64_register::cs,
x64_register::ss,
x64_register::ds,
x64_register::es,
x64_register::fs,
x64_register::gs,*/
};
inline memory_operation map_breakpoint_type(const breakpoint_type type)
{
switch (type)
{
case breakpoint_type::software:
case breakpoint_type::hardware_exec:
return memory_operation::exec;
case breakpoint_type::hardware_read:
return memory_permission::read;
case breakpoint_type::hardware_write:
return memory_permission::write;
case breakpoint_type::hardware_read_write:
return memory_permission::read_write;
default:
throw std::runtime_error("Bad bp type");
}
switch (type)
{
case breakpoint_type::software:
case breakpoint_type::hardware_exec:
return memory_operation::exec;
case breakpoint_type::hardware_read:
return memory_permission::read;
case breakpoint_type::hardware_write:
return memory_permission::write;
case breakpoint_type::hardware_read_write:
return memory_permission::read_write;
default:
throw std::runtime_error("Bad bp type");
}
}
struct breakpoint_key
{
size_t addr{};
size_t size{};
breakpoint_type type{};
size_t addr{};
size_t size{};
breakpoint_type type{};
bool operator==(const breakpoint_key& other) const
{
return this->addr == other.addr && this->size == other.size && this->type == other.type;
}
bool operator==(const breakpoint_key& other) const
{
return this->addr == other.addr && this->size == other.size && this->type == other.type;
}
};
template <>
struct std::hash<breakpoint_key>
{
std::size_t operator()(const breakpoint_key& k) const noexcept
{
return ((std::hash<size_t>()(k.addr)
^ (std::hash<size_t>()(k.size) << 1)) >> 1)
^ (std::hash<size_t>()(static_cast<size_t>(k.type)) << 1);
}
std::size_t operator()(const breakpoint_key& k) const noexcept
{
return ((std::hash<size_t>()(k.addr) ^ (std::hash<size_t>()(k.size) << 1)) >> 1) ^
(std::hash<size_t>()(static_cast<size_t>(k.type)) << 1);
}
};
class x64_gdb_stub_handler : public gdb_stub_handler
{
public:
x64_gdb_stub_handler(x64_emulator& emu)
: emu_(&emu)
{
}
public:
x64_gdb_stub_handler(x64_emulator& emu)
: emu_(&emu)
{
}
~x64_gdb_stub_handler() override = default;
~x64_gdb_stub_handler() override = default;
gdb_action cont() override
{
try
{
this->emu_->start_from_ip();
}
catch (const std::exception& e)
{
puts(e.what());
}
gdb_action cont() override
{
try
{
this->emu_->start_from_ip();
}
catch (const std::exception& e)
{
puts(e.what());
}
return gdb_action::resume;
}
return gdb_action::resume;
}
gdb_action stepi() override
{
try
{
this->emu_->start_from_ip({}, 1);
}
catch (const std::exception& e)
{
puts(e.what());
}
gdb_action stepi() override
{
try
{
this->emu_->start_from_ip({}, 1);
}
catch (const std::exception& e)
{
puts(e.what());
}
return gdb_action::resume;
}
return gdb_action::resume;
}
bool read_reg(const int regno, size_t* value) override
{
*value = 0;
bool read_reg(const int regno, size_t* value) override
{
*value = 0;
try
{
if (static_cast<size_t>(regno) >= gdb_registers.size())
{
return true;
}
try
{
if (static_cast<size_t>(regno) >= gdb_registers.size())
{
return true;
}
this->emu_->read_register(gdb_registers[regno], value, sizeof(*value));
return true;
}
catch (...)
{
return true;
}
}
this->emu_->read_register(gdb_registers[regno], value, sizeof(*value));
return true;
}
catch (...)
{
return true;
}
}
bool write_reg(const int regno, const size_t value) override
{
try
{
if (static_cast<size_t>(regno) >= gdb_registers.size())
{
return true;
}
bool write_reg(const int regno, const size_t value) override
{
try
{
if (static_cast<size_t>(regno) >= gdb_registers.size())
{
return true;
}
this->emu_->write_register(gdb_registers[regno], &value, sizeof(value));
return true;
}
catch (...)
{
return false;
}
}
this->emu_->write_register(gdb_registers[regno], &value, sizeof(value));
return true;
}
catch (...)
{
return false;
}
}
bool read_mem(const size_t addr, const size_t len, void* val) override
{
return this->emu_->try_read_memory(addr, val, len);
}
bool read_mem(const size_t addr, const size_t len, void* val) override
{
return this->emu_->try_read_memory(addr, val, len);
}
bool write_mem(const size_t addr, const size_t len, void* val) override
{
try
{
this->emu_->write_memory(addr, val, len);
return true;
}
catch (...)
{
return false;
}
}
bool write_mem(const size_t addr, const size_t len, void* val) override
{
try
{
this->emu_->write_memory(addr, val, len);
return true;
}
catch (...)
{
return false;
}
}
bool set_bp(const breakpoint_type type, const size_t addr, const size_t size) override
{
try
{
this->hooks_[{addr, size, type}] = scoped_hook(*this->emu_, this->emu_->hook_memory_access(
addr, size, map_breakpoint_type(type),
[this](uint64_t, size_t, uint64_t, memory_operation)
{
this->on_interrupt();
}));
bool set_bp(const breakpoint_type type, const size_t addr, const size_t size) override
{
try
{
this->hooks_[{addr, size, type}] = scoped_hook(
*this->emu_, this->emu_->hook_memory_access(
addr, size, map_breakpoint_type(type),
[this](uint64_t, size_t, uint64_t, memory_operation) { this->on_interrupt(); }));
return true;
}
catch (...)
{
return false;
}
}
return true;
}
catch (...)
{
return false;
}
}
bool del_bp(const breakpoint_type type, const size_t addr, const size_t size) override
{
try
{
const auto entry = this->hooks_.find({addr, size, type});
if (entry == this->hooks_.end())
{
return false;
}
bool del_bp(const breakpoint_type type, const size_t addr, const size_t size) override
{
try
{
const auto entry = this->hooks_.find({addr, size, type});
if (entry == this->hooks_.end())
{
return false;
}
this->hooks_.erase(entry);
this->hooks_.erase(entry);
return true;
}
catch (...)
{
return false;
}
}
return true;
}
catch (...)
{
return false;
}
}
void on_interrupt() override
{
this->emu_->stop();
}
void on_interrupt() override
{
this->emu_->stop();
}
private:
x64_emulator* emu_{};
std::unordered_map<breakpoint_key, scoped_hook> hooks_{};
private:
x64_emulator* emu_{};
std::unordered_map<breakpoint_key, scoped_hook> hooks_{};
};

File diff suppressed because it is too large Load Diff

View File

@@ -7,88 +7,88 @@ typedef LONG TDI_STATUS;
template <typename Traits>
struct TDI_CONNECTION_INFORMATION
{
LONG UserDataLength;
typename Traits::PVOID UserData;
LONG OptionsLength;
typename Traits::PVOID Options;
LONG RemoteAddressLength;
typename Traits::PVOID RemoteAddress;
LONG UserDataLength;
typename Traits::PVOID UserData;
LONG OptionsLength;
typename Traits::PVOID Options;
LONG RemoteAddressLength;
typename Traits::PVOID RemoteAddress;
};
template <typename Traits>
struct TDI_REQUEST
{
union
{
typename Traits::HANDLE AddressHandle;
EMULATOR_CAST(typename Traits::PVOID, CONNECTION_CONTEXT) ConnectionContext;
typename Traits::HANDLE ControlChannel;
} Handle;
union
{
typename Traits::HANDLE AddressHandle;
EMULATOR_CAST(typename Traits::PVOID, CONNECTION_CONTEXT) ConnectionContext;
typename Traits::HANDLE ControlChannel;
} Handle;
typename Traits::PVOID RequestNotifyObject;
typename Traits::PVOID RequestContext;
TDI_STATUS TdiStatus;
typename Traits::PVOID RequestNotifyObject;
typename Traits::PVOID RequestContext;
TDI_STATUS TdiStatus;
};
template <typename Traits>
struct TDI_REQUEST_SEND_DATAGRAM
{
TDI_REQUEST<Traits> Request;
EMULATOR_CAST(typename Traits::PVOID, PTDI_CONNECTION_INFORMATION) SendDatagramInformation;
TDI_REQUEST<Traits> Request;
EMULATOR_CAST(typename Traits::PVOID, PTDI_CONNECTION_INFORMATION) SendDatagramInformation;
};
template <typename Traits>
struct AFD_SEND_INFO
{
EMULATOR_CAST(typename Traits::PVOID, LPWSABUF) BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
ULONG TdiFlags;
EMULATOR_CAST(typename Traits::PVOID, LPWSABUF) BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
ULONG TdiFlags;
};
template <typename Traits>
struct AFD_SEND_DATAGRAM_INFO
{
EMULATOR_CAST(typename Traits::PVOID, LPWSABUF) BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
TDI_REQUEST_SEND_DATAGRAM<Traits> TdiRequest;
TDI_CONNECTION_INFORMATION<Traits> TdiConnInfo;
EMULATOR_CAST(typename Traits::PVOID, LPWSABUF) BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
TDI_REQUEST_SEND_DATAGRAM<Traits> TdiRequest;
TDI_CONNECTION_INFORMATION<Traits> TdiConnInfo;
};
template <typename Traits>
struct AFD_RECV_INFO
{
EMULATOR_CAST(typename Traits::PVOID, LPWSABUF) BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
ULONG TdiFlags;
EMULATOR_CAST(typename Traits::PVOID, LPWSABUF) BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
ULONG TdiFlags;
};
template <typename Traits>
struct AFD_RECV_DATAGRAM_INFO
{
EMULATOR_CAST(typename Traits::PVOID, LPWSABUF) BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
ULONG TdiFlags;
typename Traits::PVOID Address;
EMULATOR_CAST(typename Traits::PVOID, PULONG) AddressLength;
EMULATOR_CAST(typename Traits::PVOID, LPWSABUF) BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
ULONG TdiFlags;
typename Traits::PVOID Address;
EMULATOR_CAST(typename Traits::PVOID, PULONG) AddressLength;
};
struct AFD_POLL_HANDLE_INFO64
{
EmulatorTraits<Emu64>::HANDLE Handle;
ULONG PollEvents;
NTSTATUS Status;
EmulatorTraits<Emu64>::HANDLE Handle;
ULONG PollEvents;
NTSTATUS Status;
};
struct AFD_POLL_INFO64
{
LARGE_INTEGER Timeout;
ULONG NumberOfHandles;
BOOLEAN Unique;
AFD_POLL_HANDLE_INFO64 Handles[1];
LARGE_INTEGER Timeout;
ULONG NumberOfHandles;
BOOLEAN Unique;
AFD_POLL_HANDLE_INFO64 Handles[1];
};
#define AFD_POLL_RECEIVE_BIT 0
@@ -117,59 +117,57 @@ struct AFD_POLL_INFO64
#define AFD_NUM_POLL_EVENTS 11
#define AFD_POLL_ALL ((1 << AFD_NUM_POLL_EVENTS) - 1)
#define _AFD_REQUEST(ioctl) \
((((ULONG)(ioctl)) >> 2) & 0x03FF)
#define _AFD_BASE(ioctl) \
((((ULONG)(ioctl)) >> 12) & 0xFFFFF)
#define _AFD_REQUEST(ioctl) ((((ULONG)(ioctl)) >> 2) & 0x03FF)
#define _AFD_BASE(ioctl) ((((ULONG)(ioctl)) >> 12) & 0xFFFFF)
#define FSCTL_AFD_BASE FILE_DEVICE_NETWORK
#define FSCTL_AFD_BASE FILE_DEVICE_NETWORK
#define AFD_BIND 0
#define AFD_CONNECT 1
#define AFD_START_LISTEN 2
#define AFD_WAIT_FOR_LISTEN 3
#define AFD_ACCEPT 4
#define AFD_RECEIVE 5
#define AFD_RECEIVE_DATAGRAM 6
#define AFD_SEND 7
#define AFD_SEND_DATAGRAM 8
#define AFD_POLL 9
#define AFD_PARTIAL_DISCONNECT 10
#define AFD_BIND 0
#define AFD_CONNECT 1
#define AFD_START_LISTEN 2
#define AFD_WAIT_FOR_LISTEN 3
#define AFD_ACCEPT 4
#define AFD_RECEIVE 5
#define AFD_RECEIVE_DATAGRAM 6
#define AFD_SEND 7
#define AFD_SEND_DATAGRAM 8
#define AFD_POLL 9
#define AFD_PARTIAL_DISCONNECT 10
#define AFD_GET_ADDRESS 11
#define AFD_QUERY_RECEIVE_INFO 12
#define AFD_QUERY_HANDLES 13
#define AFD_SET_INFORMATION 14
#define AFD_GET_CONTEXT_LENGTH 15
#define AFD_GET_CONTEXT 16
#define AFD_SET_CONTEXT 17
#define AFD_GET_ADDRESS 11
#define AFD_QUERY_RECEIVE_INFO 12
#define AFD_QUERY_HANDLES 13
#define AFD_SET_INFORMATION 14
#define AFD_GET_CONTEXT_LENGTH 15
#define AFD_GET_CONTEXT 16
#define AFD_SET_CONTEXT 17
#define AFD_SET_CONNECT_DATA 18
#define AFD_SET_CONNECT_OPTIONS 19
#define AFD_SET_DISCONNECT_DATA 20
#define AFD_SET_DISCONNECT_OPTIONS 21
#define AFD_SET_CONNECT_DATA 18
#define AFD_SET_CONNECT_OPTIONS 19
#define AFD_SET_DISCONNECT_DATA 20
#define AFD_SET_DISCONNECT_OPTIONS 21
#define AFD_GET_CONNECT_DATA 22
#define AFD_GET_CONNECT_OPTIONS 23
#define AFD_GET_DISCONNECT_DATA 24
#define AFD_GET_DISCONNECT_OPTIONS 25
#define AFD_GET_CONNECT_DATA 22
#define AFD_GET_CONNECT_OPTIONS 23
#define AFD_GET_DISCONNECT_DATA 24
#define AFD_GET_DISCONNECT_OPTIONS 25
#define AFD_SIZE_CONNECT_DATA 26
#define AFD_SIZE_CONNECT_OPTIONS 27
#define AFD_SIZE_DISCONNECT_DATA 28
#define AFD_SIZE_DISCONNECT_OPTIONS 29
#define AFD_SIZE_CONNECT_DATA 26
#define AFD_SIZE_CONNECT_OPTIONS 27
#define AFD_SIZE_DISCONNECT_DATA 28
#define AFD_SIZE_DISCONNECT_OPTIONS 29
#define AFD_GET_INFORMATION 30
#define AFD_TRANSMIT_FILE 31
#define AFD_SUPER_ACCEPT 32
#define AFD_GET_INFORMATION 30
#define AFD_TRANSMIT_FILE 31
#define AFD_SUPER_ACCEPT 32
#define AFD_EVENT_SELECT 33
#define AFD_ENUM_NETWORK_EVENTS 34
#define AFD_EVENT_SELECT 33
#define AFD_ENUM_NETWORK_EVENTS 34
#define AFD_DEFER_ACCEPT 35
#define AFD_WAIT_FOR_LISTEN_LIFO 36
#define AFD_SET_QOS 37
#define AFD_GET_QOS 38
#define AFD_NO_OPERATION 39
#define AFD_VALIDATE_GROUP 40
#define AFD_DEFER_ACCEPT 35
#define AFD_WAIT_FOR_LISTEN_LIFO 36
#define AFD_SET_QOS 37
#define AFD_GET_QOS 38
#define AFD_NO_OPERATION 39
#define AFD_VALIDATE_GROUP 40
#define AFD_GET_UNACCEPTED_CONNECT_DATA 41

View File

@@ -8,31 +8,31 @@ using emulator_pointer = uint64_t;
template <typename T>
class object_wrapper
{
T* obj_;
T* obj_;
public:
object_wrapper(T& obj)
: obj_(&obj)
{
}
public:
object_wrapper(T& obj)
: obj_(&obj)
{
}
T& get() const
{
return *this->obj_;
}
T& get() const
{
return *this->obj_;
}
operator T&() const
{
return this->get();
}
operator T&() const
{
return this->get();
}
void serialize(utils::buffer_serializer&) const
{
}
void serialize(utils::buffer_serializer&) const
{
}
void deserialize(utils::buffer_deserializer&)
{
}
void deserialize(utils::buffer_deserializer&)
{
}
};
class windows_emulator;
@@ -45,256 +45,250 @@ using windows_emulator_wrapper = object_wrapper<windows_emulator>;
template <typename T>
class emulator_object
{
public:
using value_type = T;
public:
using value_type = T;
emulator_object(const x64_emulator_wrapper& wrapper, const uint64_t address = 0)
: emulator_object(wrapper.get(), address)
{
}
emulator_object(const x64_emulator_wrapper& wrapper, const uint64_t address = 0)
: emulator_object(wrapper.get(), address)
{
}
emulator_object(emulator& emu, const uint64_t address = 0)
: emu_(&emu)
, address_(address)
{
}
emulator_object(emulator& emu, const uint64_t address = 0)
: emu_(&emu),
address_(address)
{
}
emulator_object(emulator& emu, const void* address)
: emulator_object(emu, reinterpret_cast<uint64_t>(address))
{
}
emulator_object(emulator& emu, const void* address)
: emulator_object(emu, reinterpret_cast<uint64_t>(address))
{
}
uint64_t value() const
{
return this->address_;
}
uint64_t value() const
{
return this->address_;
}
constexpr uint64_t size() const
{
return sizeof(T);
}
constexpr uint64_t size() const
{
return sizeof(T);
}
uint64_t end() const
{
return this->value() + this->size();
}
uint64_t end() const
{
return this->value() + this->size();
}
T* ptr() const
{
return reinterpret_cast<T*>(this->address_);
}
T* ptr() const
{
return reinterpret_cast<T*>(this->address_);
}
operator bool() const
{
return this->address_ != 0;
}
operator bool() const
{
return this->address_ != 0;
}
T read(const size_t index = 0) const
{
T obj{};
this->emu_->read_memory(this->address_ + index * this->size(), &obj, sizeof(obj));
return obj;
}
T read(const size_t index = 0) const
{
T obj{};
this->emu_->read_memory(this->address_ + index * this->size(), &obj, sizeof(obj));
return obj;
}
void write(const T& value, const size_t index = 0) const
{
this->emu_->write_memory(this->address_ + index * this->size(), &value, sizeof(value));
}
void write(const T& value, const size_t index = 0) const
{
this->emu_->write_memory(this->address_ + index * this->size(), &value, sizeof(value));
}
void write_if_valid(const T& value, const size_t index = 0) const
{
if (this->operator bool())
{
this->write(value, index);
}
}
void write_if_valid(const T& value, const size_t index = 0) const
{
if (this->operator bool())
{
this->write(value, index);
}
}
template <typename F>
void access(const F& accessor, const size_t index = 0) const
{
T obj{};
this->emu_->read_memory(this->address_ + index * this->size(), &obj, sizeof(obj));
template <typename F>
void access(const F& accessor, const size_t index = 0) const
{
T obj{};
this->emu_->read_memory(this->address_ + index * this->size(), &obj, sizeof(obj));
accessor(obj);
accessor(obj);
this->write(obj, index);
}
this->write(obj, index);
}
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->address_);
}
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->address_);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->address_);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->address_);
}
void set_address(const uint64_t address)
{
this->address_ = address;
}
void set_address(const uint64_t address)
{
this->address_ = address;
}
private:
emulator* emu_{};
uint64_t address_{};
private:
emulator* emu_{};
uint64_t address_{};
};
// TODO: warning emulator_utils is hardcoded for 64bit unicode_string usage
class emulator_allocator
{
public:
emulator_allocator(emulator& emu)
: emu_(&emu)
{
}
public:
emulator_allocator(emulator& emu)
: emu_(&emu)
{
}
emulator_allocator(emulator& emu, const uint64_t address, const uint64_t size)
: emu_(&emu)
, address_(address)
, size_(size)
, active_address_(address)
{
}
emulator_allocator(emulator& emu, const uint64_t address, const uint64_t size)
: emu_(&emu),
address_(address),
size_(size),
active_address_(address)
{
}
uint64_t reserve(const uint64_t count, const uint64_t alignment = 1)
{
const auto potential_start = align_up(this->active_address_, alignment);
const auto potential_end = potential_start + count;
const auto total_end = this->address_ + this->size_;
uint64_t reserve(const uint64_t count, const uint64_t alignment = 1)
{
const auto potential_start = align_up(this->active_address_, alignment);
const auto potential_end = potential_start + count;
const auto total_end = this->address_ + this->size_;
if (potential_end > total_end)
{
throw std::runtime_error("Out of memory");
}
if (potential_end > total_end)
{
throw std::runtime_error("Out of memory");
}
this->active_address_ = potential_end;
this->active_address_ = potential_end;
return potential_start;
}
return potential_start;
}
template <typename T>
emulator_object<T> reserve(const size_t count = 1)
{
const auto potential_start = this->reserve(sizeof(T) * count, alignof(T));
return emulator_object<T>(*this->emu_, potential_start);
}
template <typename T>
emulator_object<T> reserve(const size_t count = 1)
{
const auto potential_start = this->reserve(sizeof(T) * count, alignof(T));
return emulator_object<T>(*this->emu_, potential_start);
}
char16_t* copy_string(const std::u16string_view str)
{
UNICODE_STRING<EmulatorTraits<Emu64>> uc_str{};
this->make_unicode_string(uc_str, str);
return reinterpret_cast<char16_t*>(uc_str.Buffer);
}
char16_t* copy_string(const std::u16string_view str)
{
UNICODE_STRING<EmulatorTraits<Emu64>> uc_str{};
this->make_unicode_string(uc_str, str);
return reinterpret_cast<char16_t*>(uc_str.Buffer);
}
void make_unicode_string(UNICODE_STRING<EmulatorTraits<Emu64>>& result, const std::u16string_view str)
{
constexpr auto element_size = sizeof(str[0]);
constexpr auto required_alignment = alignof(decltype(str[0]));
const auto total_length = str.size() * element_size;
void make_unicode_string(UNICODE_STRING<EmulatorTraits<Emu64>>& result, const std::u16string_view str)
{
constexpr auto element_size = sizeof(str[0]);
constexpr auto required_alignment = alignof(decltype(str[0]));
const auto total_length = str.size() * element_size;
const auto string_buffer = this->reserve(total_length + element_size, required_alignment);
const auto string_buffer = this->reserve(total_length + element_size, required_alignment);
this->emu_->write_memory(string_buffer, str.data(), total_length);
this->emu_->write_memory(string_buffer, str.data(), total_length);
constexpr std::array<char, element_size> nullbyte{};
this->emu_->write_memory(string_buffer + total_length, nullbyte.data(), nullbyte.size());
constexpr std::array<char, element_size> nullbyte{};
this->emu_->write_memory(string_buffer + total_length, nullbyte.data(), nullbyte.size());
result.Buffer = string_buffer;
result.Length = static_cast<USHORT>(total_length);
result.MaximumLength = static_cast<USHORT>(total_length + element_size);
}
result.Buffer = string_buffer;
result.Length = static_cast<USHORT>(total_length);
result.MaximumLength = static_cast<USHORT>(total_length + element_size);
}
emulator_object<UNICODE_STRING<EmulatorTraits<Emu64>>> make_unicode_string(const std::u16string_view str)
{
const auto unicode_string = this->reserve<UNICODE_STRING<EmulatorTraits<Emu64>>>();
emulator_object<UNICODE_STRING<EmulatorTraits<Emu64>>> make_unicode_string(const std::u16string_view str)
{
const auto unicode_string = this->reserve<UNICODE_STRING<EmulatorTraits<Emu64>>>();
unicode_string.access(
[&](UNICODE_STRING<EmulatorTraits<Emu64>>& unicode_str) { this->make_unicode_string(unicode_str, str); });
unicode_string.access([&](UNICODE_STRING<EmulatorTraits<Emu64>>& unicode_str)
{
this->make_unicode_string(unicode_str, str);
});
return unicode_string;
}
return unicode_string;
}
uint64_t get_base() const
{
return this->address_;
}
uint64_t get_base() const
{
return this->address_;
}
uint64_t get_size() const
{
return this->size_;
}
uint64_t get_size() const
{
return this->size_;
}
uint64_t get_next_address() const
{
return this->active_address_;
}
uint64_t get_next_address() const
{
return this->active_address_;
}
emulator& get_emulator() const
{
return *this->emu_;
}
emulator& get_emulator() const
{
return *this->emu_;
}
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->address_);
buffer.write(this->size_);
buffer.write(this->active_address_);
}
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->address_);
buffer.write(this->size_);
buffer.write(this->active_address_);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->address_);
buffer.read(this->size_);
buffer.read(this->active_address_);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->address_);
buffer.read(this->size_);
buffer.read(this->active_address_);
}
void release()
{
if (this->emu_ && this->address_ && this->size_)
{
this->emu_->release_memory(this->address_, this->size_);
this->address_ = 0;
this->size_ = 0;
}
}
void release()
{
if (this->emu_ && this->address_ && this->size_)
{
this->emu_->release_memory(this->address_, this->size_);
this->address_ = 0;
this->size_ = 0;
}
}
private:
emulator* emu_{};
uint64_t address_{};
uint64_t size_{};
uint64_t active_address_{0};
private:
emulator* emu_{};
uint64_t address_{};
uint64_t size_{};
uint64_t active_address_{0};
};
inline std::u16string read_unicode_string(const emulator& emu, const UNICODE_STRING<EmulatorTraits<Emu64>> ucs)
{
static_assert(offsetof(UNICODE_STRING<EmulatorTraits<Emu64>>, Length) == 0);
static_assert(offsetof(UNICODE_STRING<EmulatorTraits<Emu64>>, MaximumLength) == 2);
static_assert(offsetof(UNICODE_STRING<EmulatorTraits<Emu64>>, Buffer) == 8);
static_assert(sizeof(UNICODE_STRING<EmulatorTraits<Emu64>>) == 16);
static_assert(offsetof(UNICODE_STRING<EmulatorTraits<Emu64>>, Length) == 0);
static_assert(offsetof(UNICODE_STRING<EmulatorTraits<Emu64>>, MaximumLength) == 2);
static_assert(offsetof(UNICODE_STRING<EmulatorTraits<Emu64>>, Buffer) == 8);
static_assert(sizeof(UNICODE_STRING<EmulatorTraits<Emu64>>) == 16);
std::u16string result{};
result.resize(ucs.Length / 2);
std::u16string result{};
result.resize(ucs.Length / 2);
emu.read_memory(ucs.Buffer, result.data(), ucs.Length);
emu.read_memory(ucs.Buffer, result.data(), ucs.Length);
return result;
return result;
}
inline std::u16string read_unicode_string(const emulator& emu,
const emulator_object<UNICODE_STRING<EmulatorTraits<Emu64>>> uc_string)
{
const auto ucs = uc_string.read();
return read_unicode_string(emu, ucs);
const auto ucs = uc_string.read();
return read_unicode_string(emu, ucs);
}
inline std::u16string read_unicode_string(emulator& emu, const UNICODE_STRING<EmulatorTraits<Emu64>>* uc_string)
{
return read_unicode_string(emu, emulator_object<UNICODE_STRING<EmulatorTraits<Emu64>>>{emu, uc_string});
return read_unicode_string(emu, emulator_object<UNICODE_STRING<EmulatorTraits<Emu64>>>{emu, uc_string});
}

View File

@@ -2,33 +2,33 @@
struct handle_types
{
enum type : uint16_t
{
reserved = 0,
file,
device,
event,
section,
symlink,
directory,
semaphore,
port,
thread,
registry,
mutant,
token,
};
enum type : uint16_t
{
reserved = 0,
file,
device,
event,
section,
symlink,
directory,
semaphore,
port,
thread,
registry,
mutant,
token,
};
};
#pragma pack(push)
#pragma pack(1)
struct handle_value
{
uint64_t id : 32;
uint64_t type : 16;
uint64_t padding : 14;
uint64_t is_system : 1;
uint64_t is_pseudo : 1;
uint64_t id : 32;
uint64_t type : 16;
uint64_t padding : 14;
uint64_t is_system : 1;
uint64_t is_pseudo : 1;
};
#pragma pack(pop)
@@ -37,315 +37,315 @@ static_assert(sizeof(handle_value) == 8);
// TODO: this is a concrete 64bit handle
union handle
{
handle_value value;
uint64_t bits;
std::uint64_t h;
handle_value value;
uint64_t bits;
std::uint64_t h;
};
namespace utils
{
inline void serialize(buffer_serializer& buffer, const handle& h)
{
buffer.write(h.bits);
}
inline void serialize(buffer_serializer& buffer, const handle& h)
{
buffer.write(h.bits);
}
inline void deserialize(buffer_deserializer& buffer, handle& h)
{
buffer.read(h.bits);
}
inline void deserialize(buffer_deserializer& buffer, handle& h)
{
buffer.read(h.bits);
}
}
inline bool operator==(const handle& h1, const handle& h2)
{
return h1.bits == h2.bits;
return h1.bits == h2.bits;
}
inline bool operator==(const handle& h1, const uint64_t& h2)
{
return h1.bits == h2;
return h1.bits == h2;
}
inline handle_value get_handle_value(const uint64_t h)
{
handle hh{};
hh.bits = h;
return hh.value;
handle hh{};
hh.bits = h;
return hh.value;
}
constexpr handle make_handle(const uint32_t id, const handle_types::type type, const bool is_pseudo)
{
handle_value value{};
handle_value value{};
value.padding = 0;
value.id = id;
value.type = type;
value.is_system = false;
value.is_pseudo = is_pseudo;
value.padding = 0;
value.id = id;
value.type = type;
value.is_system = false;
value.is_pseudo = is_pseudo;
return {value};
return {value};
}
constexpr handle make_handle(const uint64_t value)
{
handle h{};
h.bits = value;
return h;
handle h{};
h.bits = value;
return h;
}
constexpr handle make_pseudo_handle(const uint32_t id, const handle_types::type type)
{
return make_handle(id, type, true);
return make_handle(id, type, true);
}
namespace handle_detail
{
template <typename, typename = void>
struct has_deleter_function : std::false_type
{
};
template <typename, typename = void>
struct has_deleter_function : std::false_type
{
};
template <typename T>
struct has_deleter_function<T, std::void_t<decltype(T::deleter(std::declval<T&>()))>>
: std::is_same<decltype(T::deleter(std::declval<T&>())), bool>
{
};
template <typename T>
struct has_deleter_function<T, std::void_t<decltype(T::deleter(std::declval<T&>()))>>
: std::is_same<decltype(T::deleter(std::declval<T&>())), bool>
{
};
}
struct generic_handle_store
{
virtual ~generic_handle_store() = default;
virtual bool erase(const handle h) = 0;
virtual ~generic_handle_store() = default;
virtual bool erase(const handle h) = 0;
};
template <handle_types::type Type, typename T, uint32_t IndexShift = 0>
requires(utils::Serializable<T>)
requires(utils::Serializable<T>)
class handle_store : public generic_handle_store
{
public:
using index_type = uint32_t;
using value_map = std::map<index_type, T>;
public:
using index_type = uint32_t;
using value_map = std::map<index_type, T>;
bool block_mutation(bool blocked)
{
std::swap(this->block_mutation_, blocked);
return blocked;
}
bool block_mutation(bool blocked)
{
std::swap(this->block_mutation_, blocked);
return blocked;
}
handle store(T value)
{
if (this->block_mutation_)
{
throw std::runtime_error("Mutation of handle store is blocked!");
}
handle store(T value)
{
if (this->block_mutation_)
{
throw std::runtime_error("Mutation of handle store is blocked!");
}
auto index = this->find_free_index();
this->store_.emplace(index, std::move(value));
auto index = this->find_free_index();
this->store_.emplace(index, std::move(value));
return make_handle(index);
}
return make_handle(index);
}
handle make_handle(const index_type index) const
{
handle h{};
h.bits = 0;
h.value.is_pseudo = false;
h.value.type = Type;
h.value.id = index << IndexShift;
handle make_handle(const index_type index) const
{
handle h{};
h.bits = 0;
h.value.is_pseudo = false;
h.value.type = Type;
h.value.id = index << IndexShift;
return h;
}
return h;
}
T* get_by_index(const uint32_t index)
{
return this->get(this->make_handle(index));
}
T* get_by_index(const uint32_t index)
{
return this->get(this->make_handle(index));
}
T* get(const handle_value h)
{
const auto entry = this->get_iterator(h);
if (entry == this->store_.end())
{
return nullptr;
}
T* get(const handle_value h)
{
const auto entry = this->get_iterator(h);
if (entry == this->store_.end())
{
return nullptr;
}
return &entry->second;
}
return &entry->second;
}
T* get(const handle h)
{
return this->get(h.value);
}
T* get(const handle h)
{
return this->get(h.value);
}
T* get(const uint64_t h)
{
handle hh{};
hh.bits = h;
T* get(const uint64_t h)
{
handle hh{};
hh.bits = h;
return this->get(hh);
}
return this->get(hh);
}
size_t size() const
{
return this->store_.size();
}
size_t size() const
{
return this->store_.size();
}
bool erase(const typename value_map::iterator& entry)
{
if (this->block_mutation_)
{
throw std::runtime_error("Mutation of handle store is blocked!");
}
bool erase(const typename value_map::iterator& entry)
{
if (this->block_mutation_)
{
throw std::runtime_error("Mutation of handle store is blocked!");
}
if (entry == this->store_.end())
{
return false;
}
if (entry == this->store_.end())
{
return false;
}
if constexpr (handle_detail::has_deleter_function<T>())
{
if (!T::deleter(entry->second))
{
return false;
}
}
if constexpr (handle_detail::has_deleter_function<T>())
{
if (!T::deleter(entry->second))
{
return false;
}
}
this->store_.erase(entry);
return true;
}
this->store_.erase(entry);
return true;
}
bool erase(const handle_value h)
{
const auto entry = this->get_iterator(h);
return this->erase(entry);
}
bool erase(const handle_value h)
{
const auto entry = this->get_iterator(h);
return this->erase(entry);
}
bool erase(const handle h) override
{
return this->erase(h.value);
}
bool erase(const handle h) override
{
return this->erase(h.value);
}
bool erase(const uint64_t h)
{
handle hh{};
hh.bits = h;
bool erase(const uint64_t h)
{
handle hh{};
hh.bits = h;
return this->erase(hh);
}
return this->erase(hh);
}
bool erase(const T& value)
{
const auto entry = this->find(value);
return this->erase(entry);
}
bool erase(const T& value)
{
const auto entry = this->find(value);
return this->erase(entry);
}
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->block_mutation_);
buffer.write_map(this->store_);
}
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->block_mutation_);
buffer.write_map(this->store_);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->block_mutation_);
buffer.read_map(this->store_);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->block_mutation_);
buffer.read_map(this->store_);
}
typename value_map::iterator find(const T& value)
{
auto i = this->store_.begin();
for (; i != this->store_.end(); ++i)
{
if (&i->second == &value)
{
break;
}
}
typename value_map::iterator find(const T& value)
{
auto i = this->store_.begin();
for (; i != this->store_.end(); ++i)
{
if (&i->second == &value)
{
break;
}
}
return i;
}
return i;
}
typename value_map::const_iterator find(const T& value) const
{
auto i = this->store_.begin();
for (; i != this->store_.end(); ++i)
{
if (&i->second == &value)
{
break;
}
}
typename value_map::const_iterator find(const T& value) const
{
auto i = this->store_.begin();
for (; i != this->store_.end(); ++i)
{
if (&i->second == &value)
{
break;
}
}
return i;
}
return i;
}
handle find_handle(const T& value) const
{
const auto entry = this->find(value);
if (entry == this->end())
{
return {};
}
handle find_handle(const T& value) const
{
const auto entry = this->find(value);
if (entry == this->end())
{
return {};
}
return this->make_handle(entry->first);
}
return this->make_handle(entry->first);
}
handle find_handle(const T* value) const
{
if (!value)
{
return {};
}
handle find_handle(const T* value) const
{
if (!value)
{
return {};
}
return this->find_handle(*value);
}
return this->find_handle(*value);
}
typename value_map::iterator begin()
{
return this->store_.begin();
}
typename value_map::iterator begin()
{
return this->store_.begin();
}
typename value_map::const_iterator begin() const
{
return this->store_.begin();
}
typename value_map::const_iterator begin() const
{
return this->store_.begin();
}
typename value_map::iterator end()
{
return this->store_.end();
}
typename value_map::iterator end()
{
return this->store_.end();
}
typename value_map::const_iterator end() const
{
return this->store_.end();
}
typename value_map::const_iterator end() const
{
return this->store_.end();
}
private:
typename value_map::iterator get_iterator(const handle_value h)
{
if (h.type != Type || h.is_pseudo)
{
return this->store_.end();
}
private:
typename value_map::iterator get_iterator(const handle_value h)
{
if (h.type != Type || h.is_pseudo)
{
return this->store_.end();
}
return this->store_.find(static_cast<uint32_t>(h.id) >> IndexShift);
}
return this->store_.find(static_cast<uint32_t>(h.id) >> IndexShift);
}
uint32_t find_free_index()
{
uint32_t index = 1;
for (; index > 0; ++index)
{
if (!this->store_.contains(index))
{
break;
}
}
uint32_t find_free_index()
{
uint32_t index = 1;
for (; index > 0; ++index)
{
if (!this->store_.contains(index))
{
break;
}
}
return index;
}
return index;
}
bool block_mutation_{false};
value_map store_{};
bool block_mutation_{false};
value_map store_{};
};
constexpr auto KNOWN_DLLS_DIRECTORY = make_pseudo_handle(0x1, handle_types::directory);

View File

@@ -3,30 +3,27 @@
namespace
{
struct dummy_device : stateless_device
{
NTSTATUS io_control(windows_emulator&, const io_device_context&) override
{
return STATUS_SUCCESS;
}
};
struct dummy_device : stateless_device
{
NTSTATUS io_control(windows_emulator&, const io_device_context&) override
{
return STATUS_SUCCESS;
}
};
}
std::unique_ptr<io_device> create_device(const std::u16string_view device)
{
if (device == u"CNG"
|| device == u"KsecDD"
|| device == u"PcwDrv"
|| device == u"DeviceApi\\CMApi"
|| device == u"ConDrv\\Server")
{
return std::make_unique<dummy_device>();
}
if (device == u"CNG" || device == u"KsecDD" || device == u"PcwDrv" || device == u"DeviceApi\\CMApi" ||
device == u"ConDrv\\Server")
{
return std::make_unique<dummy_device>();
}
if (device == u"Afd\\Endpoint")
{
return create_afd_endpoint();
}
if (device == u"Afd\\Endpoint")
{
return create_afd_endpoint();
}
throw std::runtime_error("Unsupported device: " + u16_to_u8(device));
throw std::runtime_error("Unsupported device: " + u16_to_u8(device));
}

View File

@@ -12,190 +12,188 @@ struct process_context;
struct io_device_context
{
handle event{};
emulator_pointer /*PIO_APC_ROUTINE*/ apc_routine{};
emulator_pointer apc_context{};
emulator_object<IO_STATUS_BLOCK<EmulatorTraits<Emu64>>> io_status_block;
ULONG io_control_code{};
emulator_pointer input_buffer{};
ULONG input_buffer_length{};
emulator_pointer output_buffer{};
ULONG output_buffer_length{};
handle event{};
emulator_pointer /*PIO_APC_ROUTINE*/ apc_routine{};
emulator_pointer apc_context{};
emulator_object<IO_STATUS_BLOCK<EmulatorTraits<Emu64>>> io_status_block;
ULONG io_control_code{};
emulator_pointer input_buffer{};
ULONG input_buffer_length{};
emulator_pointer output_buffer{};
ULONG output_buffer_length{};
io_device_context(x64_emulator& emu)
: io_status_block(emu)
{
}
io_device_context(x64_emulator& emu)
: io_status_block(emu)
{
}
io_device_context(utils::buffer_deserializer& buffer)
: io_device_context(buffer.read<x64_emulator_wrapper>().get())
{
}
io_device_context(utils::buffer_deserializer& buffer)
: io_device_context(buffer.read<x64_emulator_wrapper>().get())
{
}
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(event);
buffer.write(apc_routine);
buffer.write(apc_context);
buffer.write(io_status_block);
buffer.write(io_control_code);
buffer.write(input_buffer);
buffer.write(input_buffer_length);
buffer.write(output_buffer);
buffer.write(output_buffer_length);
}
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(event);
buffer.write(apc_routine);
buffer.write(apc_context);
buffer.write(io_status_block);
buffer.write(io_control_code);
buffer.write(input_buffer);
buffer.write(input_buffer_length);
buffer.write(output_buffer);
buffer.write(output_buffer_length);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(event);
buffer.read(apc_routine);
buffer.read(apc_context);
buffer.read(io_status_block);
buffer.read(io_control_code);
buffer.read(input_buffer);
buffer.read(input_buffer_length);
buffer.read(output_buffer);
buffer.read(output_buffer_length);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(event);
buffer.read(apc_routine);
buffer.read(apc_context);
buffer.read(io_status_block);
buffer.read(io_control_code);
buffer.read(input_buffer);
buffer.read(input_buffer_length);
buffer.read(output_buffer);
buffer.read(output_buffer_length);
}
};
struct io_device_creation_data
{
uint64_t buffer;
uint32_t length;
uint64_t buffer;
uint32_t length;
};
inline void write_io_status(const emulator_object<IO_STATUS_BLOCK<EmulatorTraits<Emu64>>> io_status_block,
const NTSTATUS status)
{
if (io_status_block)
{
io_status_block.access([&](IO_STATUS_BLOCK<EmulatorTraits<Emu64>>& status_block)
{
status_block.Status = status;
});
}
if (io_status_block)
{
io_status_block.access(
[&](IO_STATUS_BLOCK<EmulatorTraits<Emu64>>& status_block) { status_block.Status = status; });
}
}
struct io_device
{
io_device() = default;
virtual ~io_device() = default;
io_device() = default;
virtual ~io_device() = default;
io_device(io_device&&) = default;
io_device& operator=(io_device&&) = default;
io_device(io_device&&) = default;
io_device& operator=(io_device&&) = default;
io_device(const io_device&) = delete;
io_device& operator=(const io_device&) = delete;
io_device(const io_device&) = delete;
io_device& operator=(const io_device&) = delete;
virtual NTSTATUS io_control(windows_emulator& win_emu, const io_device_context& context) = 0;
virtual NTSTATUS io_control(windows_emulator& win_emu, const io_device_context& context) = 0;
virtual void create(windows_emulator& win_emu, const io_device_creation_data& data)
{
(void)win_emu;
(void)data;
}
virtual void create(windows_emulator& win_emu, const io_device_creation_data& data)
{
(void)win_emu;
(void)data;
}
virtual void work(windows_emulator& win_emu)
{
(void)win_emu;
}
virtual void work(windows_emulator& win_emu)
{
(void)win_emu;
}
virtual void serialize(utils::buffer_serializer& buffer) const = 0;
virtual void deserialize(utils::buffer_deserializer& buffer) = 0;
virtual void serialize(utils::buffer_serializer& buffer) const = 0;
virtual void deserialize(utils::buffer_deserializer& buffer) = 0;
NTSTATUS execute_ioctl(windows_emulator& win_emu, const io_device_context& c)
{
if (c.io_status_block)
{
c.io_status_block.write({});
}
NTSTATUS execute_ioctl(windows_emulator& win_emu, const io_device_context& c)
{
if (c.io_status_block)
{
c.io_status_block.write({});
}
const auto result = this->io_control(win_emu, c);
write_io_status(c.io_status_block, result);
return result;
}
const auto result = this->io_control(win_emu, c);
write_io_status(c.io_status_block, result);
return result;
}
};
struct stateless_device : io_device
{
void create(windows_emulator&, const io_device_creation_data&) final
{
}
void create(windows_emulator&, const io_device_creation_data&) final
{
}
void serialize(utils::buffer_serializer&) const override
{
}
void serialize(utils::buffer_serializer&) const override
{
}
void deserialize(utils::buffer_deserializer&) override
{
}
void deserialize(utils::buffer_deserializer&) override
{
}
};
std::unique_ptr<io_device> create_device(std::u16string_view device);
class io_device_container : public io_device
{
public:
io_device_container() = default;
public:
io_device_container() = default;
io_device_container(std::u16string device, windows_emulator& win_emu, const io_device_creation_data& data)
: device_name_(std::move(device))
{
this->setup();
this->device_->create(win_emu, data);
}
io_device_container(std::u16string device, windows_emulator& win_emu, const io_device_creation_data& data)
: device_name_(std::move(device))
{
this->setup();
this->device_->create(win_emu, data);
}
NTSTATUS io_control(windows_emulator& win_emu, const io_device_context& context) override
{
this->assert_validity();
return this->device_->io_control(win_emu, context);
}
NTSTATUS io_control(windows_emulator& win_emu, const io_device_context& context) override
{
this->assert_validity();
return this->device_->io_control(win_emu, context);
}
void work(windows_emulator& win_emu) override
{
this->assert_validity();
return this->device_->work(win_emu);
}
void work(windows_emulator& win_emu) override
{
this->assert_validity();
return this->device_->work(win_emu);
}
void serialize(utils::buffer_serializer& buffer) const override
{
this->assert_validity();
void serialize(utils::buffer_serializer& buffer) const override
{
this->assert_validity();
buffer.write_string(this->device_name_);
this->device_->serialize(buffer);
}
buffer.write_string(this->device_name_);
this->device_->serialize(buffer);
}
void deserialize(utils::buffer_deserializer& buffer) override
{
buffer.read_string(this->device_name_);
this->setup();
this->device_->deserialize(buffer);
}
void deserialize(utils::buffer_deserializer& buffer) override
{
buffer.read_string(this->device_name_);
this->setup();
this->device_->deserialize(buffer);
}
template <typename T = io_device>
requires(std::is_base_of_v<io_device, T> || std::is_same_v<io_device, T>)
T* get_internal_device()
{
this->assert_validity();
auto* value = this->device_.get();
return dynamic_cast<T*>(value);
}
template <typename T = io_device>
requires(std::is_base_of_v<io_device, T> || std::is_same_v<io_device, T>)
T* get_internal_device()
{
this->assert_validity();
auto* value = this->device_.get();
return dynamic_cast<T*>(value);
}
private:
std::u16string device_name_{};
std::unique_ptr<io_device> device_{};
private:
std::u16string device_name_{};
std::unique_ptr<io_device> device_{};
void setup()
{
this->device_ = create_device(this->device_name_);
}
void setup()
{
this->device_ = create_device(this->device_name_);
}
void assert_validity() const
{
if (!this->device_)
{
throw std::runtime_error("Device not created!");
}
}
void assert_validity() const
{
if (!this->device_)
{
throw std::runtime_error("Device not created!");
}
}
};

View File

@@ -10,216 +10,214 @@ constexpr auto KUSD_BUFFER_SIZE = page_align_up(KUSD_SIZE);
namespace
{
void setup_kusd(KUSER_SHARED_DATA64& kusd, const bool use_relative_time)
{
memset(reinterpret_cast<void*>(&kusd), 0, sizeof(kusd));
void setup_kusd(KUSER_SHARED_DATA64& kusd, const bool use_relative_time)
{
memset(reinterpret_cast<void*>(&kusd), 0, sizeof(kusd));
kusd.TickCountMultiplier = 0x0fa00000;
kusd.InterruptTime.LowPart = 0x17bd9547;
kusd.InterruptTime.High1Time = 0x0000004b;
kusd.InterruptTime.High2Time = 0x0000004b;
kusd.SystemTime.LowPart = 0x7af9da99;
kusd.SystemTime.High1Time = 0x01db27b9;
kusd.SystemTime.High2Time = 0x01db27b9;
kusd.TimeZoneBias.LowPart = 0x3c773000;
kusd.TimeZoneBias.High1Time = -17;
kusd.TimeZoneBias.High2Time = -17;
kusd.TimeZoneId = 0x00000002;
kusd.LargePageMinimum = 0x00200000;
kusd.RNGSeedVersion = 0x0000000000000013;
kusd.TimeZoneBiasStamp = 0x00000004;
kusd.NtBuildNumber = 0x00006c51;
kusd.NtProductType = NtProductWinNt;
kusd.ProductTypeIsValid = 0x01;
kusd.NativeProcessorArchitecture = 0x0009;
kusd.NtMajorVersion = 0x0000000a;
kusd.BootId = 0x0000000b;
kusd.SystemExpirationDate.QuadPart = 0x01dc26860a9ff300;
kusd.SuiteMask = 0x00000110;
kusd.MitigationPolicies.MitigationPolicies = 0x0a;
kusd.MitigationPolicies.NXSupportPolicy = 0x02;
kusd.MitigationPolicies.SEHValidationPolicy = 0x02;
kusd.CyclesPerYield = 0x0064;
kusd.DismountCount = 0x00000006;
kusd.ComPlusPackage = 0x00000001;
kusd.LastSystemRITEventTickCount = 0x01ec1fd3;
kusd.NumberOfPhysicalPages = 0x00bf0958;
kusd.FullNumberOfPhysicalPages = 0x0000000000bf0958;
kusd.TickCount.TickCount.LowPart = 0x001f7f05;
kusd.TickCount.TickCountQuad = 0x00000000001f7f05;
kusd.Cookie = 0x1c3471da;
kusd.ConsoleSessionForegroundProcessId = 0x00000000000028f4;
kusd.TimeUpdateLock = 0x0000000002b28586;
kusd.BaselineSystemTimeQpc = 0x0000004b17cd596c;
kusd.BaselineInterruptTimeQpc = 0x0000004b17cd596c;
kusd.QpcSystemTimeIncrement = 0x8000000000000000;
kusd.QpcInterruptTimeIncrement = 0x8000000000000000;
kusd.QpcSystemTimeIncrementShift = 0x01;
kusd.QpcInterruptTimeIncrementShift = 0x01;
kusd.UnparkedProcessorCount = 0x000c;
kusd.TelemetryCoverageRound = 0x00000001;
kusd.LangGenerationCount = 0x00000003;
kusd.InterruptTimeBias = 0x00000015a5d56406;
kusd.QpcBias = 0x000000159530c4af;
kusd.ActiveProcessorCount = 0x0000000c;
kusd.ActiveGroupCount = 0x01;
kusd.QpcData.QpcData = 0x0083;
kusd.QpcData.QpcBypassEnabled = 0x83;
kusd.TimeZoneBiasEffectiveStart.QuadPart = 0x01db276e654cb2ff;
kusd.TimeZoneBiasEffectiveEnd.QuadPart = 0x01db280b8c3b2800;
kusd.XState.EnabledFeatures = 0x000000000000001f;
kusd.XState.EnabledVolatileFeatures = 0x000000000000000f;
kusd.XState.Size = 0x000003c0;
kusd.TickCountMultiplier = 0x0fa00000;
kusd.InterruptTime.LowPart = 0x17bd9547;
kusd.InterruptTime.High1Time = 0x0000004b;
kusd.InterruptTime.High2Time = 0x0000004b;
kusd.SystemTime.LowPart = 0x7af9da99;
kusd.SystemTime.High1Time = 0x01db27b9;
kusd.SystemTime.High2Time = 0x01db27b9;
kusd.TimeZoneBias.LowPart = 0x3c773000;
kusd.TimeZoneBias.High1Time = -17;
kusd.TimeZoneBias.High2Time = -17;
kusd.TimeZoneId = 0x00000002;
kusd.LargePageMinimum = 0x00200000;
kusd.RNGSeedVersion = 0x0000000000000013;
kusd.TimeZoneBiasStamp = 0x00000004;
kusd.NtBuildNumber = 0x00006c51;
kusd.NtProductType = NtProductWinNt;
kusd.ProductTypeIsValid = 0x01;
kusd.NativeProcessorArchitecture = 0x0009;
kusd.NtMajorVersion = 0x0000000a;
kusd.BootId = 0x0000000b;
kusd.SystemExpirationDate.QuadPart = 0x01dc26860a9ff300;
kusd.SuiteMask = 0x00000110;
kusd.MitigationPolicies.MitigationPolicies = 0x0a;
kusd.MitigationPolicies.NXSupportPolicy = 0x02;
kusd.MitigationPolicies.SEHValidationPolicy = 0x02;
kusd.CyclesPerYield = 0x0064;
kusd.DismountCount = 0x00000006;
kusd.ComPlusPackage = 0x00000001;
kusd.LastSystemRITEventTickCount = 0x01ec1fd3;
kusd.NumberOfPhysicalPages = 0x00bf0958;
kusd.FullNumberOfPhysicalPages = 0x0000000000bf0958;
kusd.TickCount.TickCount.LowPart = 0x001f7f05;
kusd.TickCount.TickCountQuad = 0x00000000001f7f05;
kusd.Cookie = 0x1c3471da;
kusd.ConsoleSessionForegroundProcessId = 0x00000000000028f4;
kusd.TimeUpdateLock = 0x0000000002b28586;
kusd.BaselineSystemTimeQpc = 0x0000004b17cd596c;
kusd.BaselineInterruptTimeQpc = 0x0000004b17cd596c;
kusd.QpcSystemTimeIncrement = 0x8000000000000000;
kusd.QpcInterruptTimeIncrement = 0x8000000000000000;
kusd.QpcSystemTimeIncrementShift = 0x01;
kusd.QpcInterruptTimeIncrementShift = 0x01;
kusd.UnparkedProcessorCount = 0x000c;
kusd.TelemetryCoverageRound = 0x00000001;
kusd.LangGenerationCount = 0x00000003;
kusd.InterruptTimeBias = 0x00000015a5d56406;
kusd.QpcBias = 0x000000159530c4af;
kusd.ActiveProcessorCount = 0x0000000c;
kusd.ActiveGroupCount = 0x01;
kusd.QpcData.QpcData = 0x0083;
kusd.QpcData.QpcBypassEnabled = 0x83;
kusd.TimeZoneBiasEffectiveStart.QuadPart = 0x01db276e654cb2ff;
kusd.TimeZoneBiasEffectiveEnd.QuadPart = 0x01db280b8c3b2800;
kusd.XState.EnabledFeatures = 0x000000000000001f;
kusd.XState.EnabledVolatileFeatures = 0x000000000000000f;
kusd.XState.Size = 0x000003c0;
if (use_relative_time)
{
kusd.QpcFrequency = 1000;
}
else
{
kusd.QpcFrequency = std::chrono::steady_clock::period::den;
}
if (use_relative_time)
{
kusd.QpcFrequency = 1000;
}
else
{
kusd.QpcFrequency = std::chrono::steady_clock::period::den;
}
constexpr std::wstring_view root_dir{L"C:\\WINDOWS"};
memcpy(&kusd.NtSystemRoot.arr[0], root_dir.data(), root_dir.size() * 2);
constexpr std::wstring_view root_dir{L"C:\\WINDOWS"};
memcpy(&kusd.NtSystemRoot.arr[0], root_dir.data(), root_dir.size() * 2);
kusd.ImageNumberLow = IMAGE_FILE_MACHINE_I386;
kusd.ImageNumberHigh = IMAGE_FILE_MACHINE_AMD64;
}
kusd.ImageNumberLow = IMAGE_FILE_MACHINE_I386;
kusd.ImageNumberHigh = IMAGE_FILE_MACHINE_AMD64;
}
}
namespace utils
{
inline void serialize(buffer_serializer& buffer, const KUSER_SHARED_DATA64& kusd)
{
static_assert(KUSD_SIZE == sizeof(kusd));
buffer.write(&kusd, KUSD_SIZE);
}
inline void serialize(buffer_serializer& buffer, const KUSER_SHARED_DATA64& kusd)
{
static_assert(KUSD_SIZE == sizeof(kusd));
buffer.write(&kusd, KUSD_SIZE);
}
inline void deserialize(buffer_deserializer& buffer, KUSER_SHARED_DATA64& kusd)
{
buffer.read(&kusd, KUSD_SIZE);
}
inline void deserialize(buffer_deserializer& buffer, KUSER_SHARED_DATA64& kusd)
{
buffer.read(&kusd, KUSD_SIZE);
}
}
kusd_mmio::kusd_mmio(x64_emulator& emu, process_context& process)
: emu_(&emu)
, process_(&process)
: emu_(&emu),
process_(&process)
{
}
kusd_mmio::~kusd_mmio()
{
this->deregister_mmio();
this->deregister_mmio();
}
kusd_mmio::kusd_mmio(utils::buffer_deserializer& buffer)
: kusd_mmio(buffer.read<x64_emulator_wrapper>(), buffer.read<process_context_wrapper>())
: kusd_mmio(buffer.read<x64_emulator_wrapper>(), buffer.read<process_context_wrapper>())
{
}
void kusd_mmio::setup(const bool use_relative_time)
{
this->use_relative_time_ = use_relative_time;
this->use_relative_time_ = use_relative_time;
setup_kusd(this->kusd_, use_relative_time);
this->start_time_ = convert_from_ksystem_time(this->kusd_.SystemTime);
setup_kusd(this->kusd_, use_relative_time);
this->start_time_ = convert_from_ksystem_time(this->kusd_.SystemTime);
this->register_mmio();
this->register_mmio();
}
void kusd_mmio::serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->use_relative_time_);
buffer.write(this->kusd_);
buffer.write(this->start_time_);
buffer.write(this->use_relative_time_);
buffer.write(this->kusd_);
buffer.write(this->start_time_);
}
void kusd_mmio::deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->use_relative_time_);
buffer.read(this->kusd_);
buffer.read(this->start_time_);
buffer.read(this->use_relative_time_);
buffer.read(this->kusd_);
buffer.read(this->start_time_);
this->deregister_mmio();
this->register_mmio();
this->deregister_mmio();
this->register_mmio();
}
uint64_t kusd_mmio::read(const uint64_t addr, const size_t size)
{
uint64_t result{};
uint64_t result{};
this->update();
this->update();
if (addr >= KUSD_SIZE)
{
return result;
}
if (addr >= KUSD_SIZE)
{
return result;
}
const auto end = addr + size;
const auto valid_end = std::min(end, static_cast<uint64_t>(KUSD_SIZE));
const auto real_size = valid_end - addr;
const auto end = addr + size;
const auto valid_end = std::min(end, static_cast<uint64_t>(KUSD_SIZE));
const auto real_size = valid_end - addr;
if (real_size > sizeof(result))
{
return result;
}
if (real_size > sizeof(result))
{
return result;
}
const auto* kusd_buffer = reinterpret_cast<uint8_t*>(&this->kusd_);
memcpy(&result, kusd_buffer + addr, real_size);
const auto* kusd_buffer = reinterpret_cast<uint8_t*>(&this->kusd_);
memcpy(&result, kusd_buffer + addr, real_size);
return result;
return result;
}
uint64_t kusd_mmio::address()
{
return KUSD_ADDRESS;
return KUSD_ADDRESS;
}
void kusd_mmio::update()
{
auto time = this->start_time_;
auto time = this->start_time_;
if (this->use_relative_time_)
{
const auto passed_time = this->process_->executed_instructions;
const auto clock_frequency = static_cast<uint64_t>(this->kusd_.QpcFrequency);
if (this->use_relative_time_)
{
const auto passed_time = this->process_->executed_instructions;
const auto clock_frequency = static_cast<uint64_t>(this->kusd_.QpcFrequency);
using duration = std::chrono::system_clock::duration;
time += duration(passed_time * duration::period::den / clock_frequency);
}
else
{
time = std::chrono::system_clock::now();
}
using duration = std::chrono::system_clock::duration;
time += duration(passed_time * duration::period::den / clock_frequency);
}
else
{
time = std::chrono::system_clock::now();
}
convert_to_ksystem_time(&this->kusd_.SystemTime, time);
convert_to_ksystem_time(&this->kusd_.SystemTime, time);
}
void kusd_mmio::register_mmio()
{
if (this->registered_)
{
return;
}
if (this->registered_)
{
return;
}
this->registered_ = true;
this->registered_ = true;
this->emu_->allocate_mmio(KUSD_ADDRESS, KUSD_BUFFER_SIZE,
[this](const uint64_t addr, const size_t size)
{
return this->read(addr, size);
}, [](const uint64_t, const size_t, const uint64_t)
{
// Writing not supported!
});
this->emu_->allocate_mmio(
KUSD_ADDRESS, KUSD_BUFFER_SIZE,
[this](const uint64_t addr, const size_t size) { return this->read(addr, size); },
[](const uint64_t, const size_t, const uint64_t) {
// Writing not supported!
});
}
void kusd_mmio::deregister_mmio()
{
if (this->registered_)
{
this->registered_ = false;
this->emu_->release_memory(KUSD_ADDRESS, KUSD_BUFFER_SIZE);
}
if (this->registered_)
{
this->registered_ = false;
this->emu_->release_memory(KUSD_ADDRESS, KUSD_BUFFER_SIZE);
}
}

View File

@@ -10,48 +10,48 @@ class windows_emulator;
class kusd_mmio
{
public:
kusd_mmio(x64_emulator& emu, process_context& process);
~kusd_mmio();
public:
kusd_mmio(x64_emulator& emu, process_context& process);
~kusd_mmio();
kusd_mmio(utils::buffer_deserializer& buffer);
kusd_mmio(utils::buffer_deserializer& buffer);
kusd_mmio(kusd_mmio&&) = delete;
kusd_mmio(const kusd_mmio&) = delete;
kusd_mmio& operator=(kusd_mmio&& obj) = delete;
kusd_mmio& operator=(const kusd_mmio&) = delete;
kusd_mmio(kusd_mmio&&) = delete;
kusd_mmio(const kusd_mmio&) = delete;
kusd_mmio& operator=(kusd_mmio&& obj) = delete;
kusd_mmio& operator=(const kusd_mmio&) = delete;
void serialize(utils::buffer_serializer& buffer) const;
void deserialize(utils::buffer_deserializer& buffer);
void serialize(utils::buffer_serializer& buffer) const;
void deserialize(utils::buffer_deserializer& buffer);
KUSER_SHARED_DATA64& get()
{
return this->kusd_;
}
KUSER_SHARED_DATA64& get()
{
return this->kusd_;
}
const KUSER_SHARED_DATA64& get() const
{
return this->kusd_;
}
const KUSER_SHARED_DATA64& get() const
{
return this->kusd_;
}
static uint64_t address();
static uint64_t address();
void setup(bool use_relative_time);
void setup(bool use_relative_time);
private:
x64_emulator* emu_{};
process_context* process_{};
private:
x64_emulator* emu_{};
process_context* process_{};
bool registered_{};
bool use_relative_time_{};
bool registered_{};
bool use_relative_time_{};
KUSER_SHARED_DATA64 kusd_{};
std::chrono::system_clock::time_point start_time_{};
KUSER_SHARED_DATA64 kusd_{};
std::chrono::system_clock::time_point start_time_{};
uint64_t read(uint64_t addr, size_t size);
uint64_t read(uint64_t addr, size_t size);
void update();
void update();
void register_mmio();
void deregister_mmio();
void register_mmio();
void deregister_mmio();
};

View File

@@ -7,130 +7,141 @@ namespace
{
#ifdef _WIN32
#define COLOR(win, posix) win
using color_type = WORD;
using color_type = WORD;
#else
#define COLOR(win, posix) posix
using color_type = const char*;
using color_type = const char*;
#endif
color_type get_reset_color()
{
return COLOR(7, "\033[0m");
}
color_type get_reset_color()
{
return COLOR(7, "\033[0m");
}
color_type get_color_type(const color c)
{
using enum color;
color_type get_color_type(const color c)
{
using enum color;
switch (c)
{
case black: return COLOR(0x8, "\033[0;90m");
case red: return COLOR(0xC, "\033[0;91m");
case green: return COLOR(0xA, "\033[0;92m");
case yellow: return COLOR(0xE, "\033[0;93m");
case blue: return COLOR(0x9, "\033[0;94m");
case cyan: return COLOR(0xB, "\033[0;96m");
case pink: return COLOR(0xD, "\033[0;95m");
case white: return COLOR(0xF, "\033[0;97m");
case dark_gray: return COLOR(0x8, "\033[0;97m");
case gray:
default: return get_reset_color();
}
}
switch (c)
{
case black:
return COLOR(0x8, "\033[0;90m");
case red:
return COLOR(0xC, "\033[0;91m");
case green:
return COLOR(0xA, "\033[0;92m");
case yellow:
return COLOR(0xE, "\033[0;93m");
case blue:
return COLOR(0x9, "\033[0;94m");
case cyan:
return COLOR(0xB, "\033[0;96m");
case pink:
return COLOR(0xD, "\033[0;95m");
case white:
return COLOR(0xF, "\033[0;97m");
case dark_gray:
return COLOR(0x8, "\033[0;97m");
case gray:
default:
return get_reset_color();
}
}
#ifdef _WIN32
HANDLE get_console_handle()
{
return GetStdHandle(STD_OUTPUT_HANDLE);
}
HANDLE get_console_handle()
{
return GetStdHandle(STD_OUTPUT_HANDLE);
}
#endif
void set_color(const color_type color)
{
void set_color(const color_type color)
{
#ifdef _WIN32
SetConsoleTextAttribute(get_console_handle(), color);
SetConsoleTextAttribute(get_console_handle(), color);
#else
printf("%s", color);
printf("%s", color);
#endif
}
}
void reset_color()
{
(void)fflush(stdout);
set_color(get_reset_color());
(void)fflush(stdout);
}
void reset_color()
{
(void)fflush(stdout);
set_color(get_reset_color());
(void)fflush(stdout);
}
std::string_view format(va_list* ap, const char* message)
{
thread_local char buffer[0x1000];
std::string_view format(va_list* ap, const char* message)
{
thread_local char buffer[0x1000];
#ifdef _WIN32
const int count = _vsnprintf_s(buffer, sizeof(buffer), sizeof(buffer), message, *ap);
const int count = _vsnprintf_s(buffer, sizeof(buffer), sizeof(buffer), message, *ap);
#else
const int count = vsnprintf(buffer, sizeof(buffer), message, *ap);
const int count = vsnprintf(buffer, sizeof(buffer), message, *ap);
#endif
if (count < 0) return {};
return {buffer, static_cast<size_t>(count)};
}
if (count < 0)
return {};
return {buffer, static_cast<size_t>(count)};
}
#define format_to_string(msg, str)\
va_list ap;\
va_start(ap, msg);\
const auto str = format(&ap, msg);\
va_end(ap);
#define format_to_string(msg, str) \
va_list ap; \
va_start(ap, msg); \
const auto str = format(&ap, msg); \
va_end(ap);
void print_colored(const std::string_view& line, const color_type base_color)
{
const auto _ = utils::finally(&reset_color);
set_color(base_color);
(void)fwrite(line.data(), 1, line.size(), stdout);
}
void print_colored(const std::string_view& line, const color_type base_color)
{
const auto _ = utils::finally(&reset_color);
set_color(base_color);
(void)fwrite(line.data(), 1, line.size(), stdout);
}
}
void logger::print(const color c, const std::string_view message) const
{
if (this->disable_output_)
{
return;
}
if (this->disable_output_)
{
return;
}
print_colored(message, get_color_type(c));
print_colored(message, get_color_type(c));
}
void logger::print(const color c, const char* message, ...) const
{
format_to_string(message, data);
this->print(c, data);
format_to_string(message, data);
this->print(c, data);
}
void logger::info(const char* message, ...) const
{
format_to_string(message, data);
this->print(color::cyan, data);
format_to_string(message, data);
this->print(color::cyan, data);
}
void logger::warn(const char* message, ...) const
{
format_to_string(message, data);
this->print(color::yellow, data);
format_to_string(message, data);
this->print(color::yellow, data);
}
void logger::error(const char* message, ...) const
{
format_to_string(message, data);
this->print(color::red, data);
format_to_string(message, data);
this->print(color::red, data);
}
void logger::success(const char* message, ...) const
{
format_to_string(message, data);
this->print(color::green, data);
format_to_string(message, data);
this->print(color::green, data);
}
void logger::log(const char* message, ...) const
{
format_to_string(message, data);
this->print(color::gray, data);
format_to_string(message, data);
this->print(color::gray, data);
}

View File

@@ -3,44 +3,44 @@
#ifdef OS_WINDOWS
#define FORMAT_ATTRIBUTE(fmt_pos, var_pos)
#else
#define FORMAT_ATTRIBUTE(fmt_pos, var_pos) __attribute__((format( printf, fmt_pos, var_pos)))
#define FORMAT_ATTRIBUTE(fmt_pos, var_pos) __attribute__((format(printf, fmt_pos, var_pos)))
#endif
enum class color
{
black,
red,
green,
yellow,
blue,
cyan,
pink,
white,
gray,
dark_gray,
black,
red,
green,
yellow,
blue,
cyan,
pink,
white,
gray,
dark_gray,
};
class logger
{
public:
void print(color c, std::string_view message) const;
void print(color c, const char* message, ...) const FORMAT_ATTRIBUTE(3, 4);
void info(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
void warn(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
void error(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
void success(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
void log(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
public:
void print(color c, std::string_view message) const;
void print(color c, const char* message, ...) const FORMAT_ATTRIBUTE(3, 4);
void info(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
void warn(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
void error(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
void success(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
void log(const char* message, ...) const FORMAT_ATTRIBUTE(2, 3);
void disable_output(const bool value)
{
this->disable_output_ = value;
}
void disable_output(const bool value)
{
this->disable_output_ = value;
}
bool is_output_disabled() const
{
return this->disable_output_;
}
bool is_output_disabled() const
{
return this->disable_output_;
}
private:
bool disable_output_{false};
private:
bool disable_output_{false};
};

View File

@@ -5,69 +5,69 @@
inline std::string get_permission_string(const memory_permission permission)
{
const bool has_exec = (permission & memory_permission::exec) != memory_permission::none;
const bool has_read = (permission & memory_permission::read) != memory_permission::none;
const bool has_write = (permission & memory_permission::write) != memory_permission::none;
const bool has_exec = (permission & memory_permission::exec) != memory_permission::none;
const bool has_read = (permission & memory_permission::read) != memory_permission::none;
const bool has_write = (permission & memory_permission::write) != memory_permission::none;
std::string res = {};
res.reserve(3);
std::string res = {};
res.reserve(3);
res.push_back(has_read ? 'r' : '-');
res.push_back(has_write ? 'w' : '-');
res.push_back(has_exec ? 'x' : '-');
res.push_back(has_read ? 'r' : '-');
res.push_back(has_write ? 'w' : '-');
res.push_back(has_exec ? 'x' : '-');
return res;
return res;
}
inline memory_permission map_nt_to_emulator_protection(uint32_t nt_protection)
{
nt_protection &= ~static_cast<uint32_t>(PAGE_GUARD); // TODO: Implement that
nt_protection &= ~static_cast<uint32_t>(PAGE_GUARD); // TODO: Implement that
switch (nt_protection)
{
case PAGE_NOACCESS:
return memory_permission::none;
case PAGE_READONLY:
return memory_permission::read;
case PAGE_READWRITE:
case PAGE_WRITECOPY:
return memory_permission::read | memory_permission::write;
case PAGE_EXECUTE:
case PAGE_EXECUTE_READ:
return memory_permission::read | memory_permission::exec;
case PAGE_EXECUTE_READWRITE:
return memory_permission::all;
case PAGE_EXECUTE_WRITECOPY:
default:
throw std::runtime_error("Failed to map protection");
}
switch (nt_protection)
{
case PAGE_NOACCESS:
return memory_permission::none;
case PAGE_READONLY:
return memory_permission::read;
case PAGE_READWRITE:
case PAGE_WRITECOPY:
return memory_permission::read | memory_permission::write;
case PAGE_EXECUTE:
case PAGE_EXECUTE_READ:
return memory_permission::read | memory_permission::exec;
case PAGE_EXECUTE_READWRITE:
return memory_permission::all;
case PAGE_EXECUTE_WRITECOPY:
default:
throw std::runtime_error("Failed to map protection");
}
}
inline uint32_t map_emulator_to_nt_protection(const memory_permission permission)
{
const bool has_exec = (permission & memory_permission::exec) != memory_permission::none;
const bool has_read = (permission & memory_permission::read) != memory_permission::none;
const bool has_write = (permission & memory_permission::write) != memory_permission::none;
const bool has_exec = (permission & memory_permission::exec) != memory_permission::none;
const bool has_read = (permission & memory_permission::read) != memory_permission::none;
const bool has_write = (permission & memory_permission::write) != memory_permission::none;
if (!has_read)
{
return PAGE_NOACCESS;
}
if (!has_read)
{
return PAGE_NOACCESS;
}
if (has_exec && has_write)
{
return PAGE_EXECUTE_READWRITE;
}
if (has_exec && has_write)
{
return PAGE_EXECUTE_READWRITE;
}
if (has_exec)
{
return PAGE_EXECUTE_READ;
}
if (has_exec)
{
return PAGE_EXECUTE_READ;
}
if (has_write)
{
return PAGE_READWRITE;
}
if (has_write)
{
return PAGE_READWRITE;
}
return PAGE_READONLY;
return PAGE_READONLY;
}

View File

@@ -3,10 +3,10 @@
struct exported_symbol
{
std::string name{};
uint64_t ordinal{};
uint64_t rva{};
uint64_t address{};
std::string name{};
uint64_t ordinal{};
uint64_t rva{};
uint64_t address{};
};
using exported_symbols = std::vector<exported_symbol>;
@@ -14,39 +14,39 @@ using address_name_mapping = std::map<uint64_t, std::string>;
struct mapped_section
{
std::string name{};
basic_memory_region region{};
std::string name{};
basic_memory_region region{};
};
struct mapped_module
{
std::string name{};
std::filesystem::path path{};
std::string name{};
std::filesystem::path path{};
uint64_t image_base{};
uint64_t size_of_image{};
uint64_t entry_point{};
uint64_t image_base{};
uint64_t size_of_image{};
uint64_t entry_point{};
exported_symbols exports{};
address_name_mapping address_names{};
exported_symbols exports{};
address_name_mapping address_names{};
std::vector<mapped_section> sections{};
std::vector<mapped_section> sections{};
bool is_within(const uint64_t address) const
{
return address >= this->image_base && address < (this->image_base + this->size_of_image);
}
bool is_within(const uint64_t address) const
{
return address >= this->image_base && address < (this->image_base + this->size_of_image);
}
uint64_t find_export(const std::string_view export_name) const
{
for (auto& symbol : this->exports)
{
if (symbol.name == export_name)
{
return symbol.address;
}
}
uint64_t find_export(const std::string_view export_name) const
{
for (auto& symbol : this->exports)
{
if (symbol.name == export_name)
{
return symbol.address;
}
}
return 0;
}
return 0;
}
};

View File

@@ -5,124 +5,124 @@
namespace
{
std::filesystem::path canonicalize_module_path(const std::filesystem::path& file)
{
constexpr std::u16string_view nt_prefix = u"\\??\\";
const auto wide_file = file.u16string();
std::filesystem::path canonicalize_module_path(const std::filesystem::path& file)
{
constexpr std::u16string_view nt_prefix = u"\\??\\";
const auto wide_file = file.u16string();
if (!wide_file.starts_with(nt_prefix))
{
return canonical(absolute(file));
}
if (!wide_file.starts_with(nt_prefix))
{
return canonical(absolute(file));
}
return canonicalize_module_path(wide_file.substr(nt_prefix.size()));
}
return canonicalize_module_path(wide_file.substr(nt_prefix.size()));
}
}
namespace utils
{
static void serialize(buffer_serializer& buffer, const exported_symbol& sym)
{
buffer.write(sym.name);
buffer.write(sym.ordinal);
buffer.write(sym.rva);
buffer.write(sym.address);
}
static void serialize(buffer_serializer& buffer, const exported_symbol& sym)
{
buffer.write(sym.name);
buffer.write(sym.ordinal);
buffer.write(sym.rva);
buffer.write(sym.address);
}
static void deserialize(buffer_deserializer& buffer, exported_symbol& sym)
{
buffer.read(sym.name);
buffer.read(sym.ordinal);
buffer.read(sym.rva);
buffer.read(sym.address);
}
static void deserialize(buffer_deserializer& buffer, exported_symbol& sym)
{
buffer.read(sym.name);
buffer.read(sym.ordinal);
buffer.read(sym.rva);
buffer.read(sym.address);
}
static void serialize(buffer_serializer& buffer, const mapped_module& mod)
{
buffer.write_string(mod.name);
buffer.write(mod.path.u16string());
static void serialize(buffer_serializer& buffer, const mapped_module& mod)
{
buffer.write_string(mod.name);
buffer.write(mod.path.u16string());
buffer.write(mod.image_base);
buffer.write(mod.size_of_image);
buffer.write(mod.entry_point);
buffer.write(mod.image_base);
buffer.write(mod.size_of_image);
buffer.write(mod.entry_point);
buffer.write_vector(mod.exports);
buffer.write_map(mod.address_names);
}
buffer.write_vector(mod.exports);
buffer.write_map(mod.address_names);
}
static void deserialize(buffer_deserializer& buffer, mapped_module& mod)
{
mod.name = buffer.read_string();
mod.path = buffer.read_string<std::u16string::value_type>();
static void deserialize(buffer_deserializer& buffer, mapped_module& mod)
{
mod.name = buffer.read_string();
mod.path = buffer.read_string<std::u16string::value_type>();
buffer.read(mod.image_base);
buffer.read(mod.size_of_image);
buffer.read(mod.entry_point);
buffer.read(mod.image_base);
buffer.read(mod.size_of_image);
buffer.read(mod.entry_point);
buffer.read_vector(mod.exports);
buffer.read_map(mod.address_names);
}
buffer.read_vector(mod.exports);
buffer.read_map(mod.address_names);
}
}
module_manager::module_manager(emulator& emu)
: emu_(&emu)
: emu_(&emu)
{
}
mapped_module* module_manager::map_module(const std::filesystem::path& file, logger& logger)
{
auto canonical_file = canonicalize_module_path(file);
auto canonical_file = canonicalize_module_path(file);
for (auto& mod : this->modules_)
{
if (mod.second.path == canonical_file)
{
return &mod.second;
}
}
for (auto& mod : this->modules_)
{
if (mod.second.path == canonical_file)
{
return &mod.second;
}
}
try
{
auto mod = map_module_from_file(*this->emu_, std::move(canonical_file));
try
{
auto mod = map_module_from_file(*this->emu_, std::move(canonical_file));
logger.log("Mapped %s at 0x%" PRIx64 "\n", mod.path.generic_string().c_str(), mod.image_base);
logger.log("Mapped %s at 0x%" PRIx64 "\n", mod.path.generic_string().c_str(), mod.image_base);
const auto image_base = mod.image_base;
const auto entry = this->modules_.try_emplace(image_base, std::move(mod));
return &entry.first->second;
}
catch (const std::exception& e)
{
logger.error("Failed to map %s: %s\n", file.generic_string().c_str(), e.what());
return nullptr;
}
catch (...)
{
logger.error("Failed to map %s: Unknown error\n", file.generic_string().c_str());
return nullptr;
}
const auto image_base = mod.image_base;
const auto entry = this->modules_.try_emplace(image_base, std::move(mod));
return &entry.first->second;
}
catch (const std::exception& e)
{
logger.error("Failed to map %s: %s\n", file.generic_string().c_str(), e.what());
return nullptr;
}
catch (...)
{
logger.error("Failed to map %s: Unknown error\n", file.generic_string().c_str());
return nullptr;
}
}
void module_manager::serialize(utils::buffer_serializer& buffer) const
{
buffer.write_map(this->modules_);
buffer.write_map(this->modules_);
}
void module_manager::deserialize(utils::buffer_deserializer& buffer)
{
buffer.read_map(this->modules_);
buffer.read_map(this->modules_);
}
bool module_manager::unmap(const uint64_t address)
{
const auto mod = this->modules_.find(address);
if (mod == this->modules_.end())
{
return false;
}
const auto mod = this->modules_.find(address);
if (mod == this->modules_.end())
{
return false;
}
unmap_module(*this->emu_, mod->second);
this->modules_.erase(mod);
unmap_module(*this->emu_, mod->second);
this->modules_.erase(mod);
return true;
return true;
}

View File

@@ -6,58 +6,58 @@ class logger;
class module_manager
{
public:
module_manager(emulator& emu);
public:
module_manager(emulator& emu);
mapped_module* map_module(const std::filesystem::path& file, logger& logger);
mapped_module* map_module(const std::filesystem::path& file, logger& logger);
mapped_module* find_by_address(const uint64_t address)
{
const auto entry = this->get_module(address);
if (entry != this->modules_.end())
{
return &entry->second;
}
mapped_module* find_by_address(const uint64_t address)
{
const auto entry = this->get_module(address);
if (entry != this->modules_.end())
{
return &entry->second;
}
return nullptr;
}
return nullptr;
}
const char* find_name(const uint64_t address)
{
const auto* mod = this->find_by_address(address);
if (!mod)
{
return "<N/A>";
}
const char* find_name(const uint64_t address)
{
const auto* mod = this->find_by_address(address);
if (!mod)
{
return "<N/A>";
}
return mod->name.c_str();
}
return mod->name.c_str();
}
void serialize(utils::buffer_serializer& buffer) const;
void deserialize(utils::buffer_deserializer& buffer);
void serialize(utils::buffer_serializer& buffer) const;
void deserialize(utils::buffer_deserializer& buffer);
bool unmap(const uint64_t address);
bool unmap(const uint64_t address);
private:
emulator* emu_{};
private:
emulator* emu_{};
using module_map = std::map<uint64_t, mapped_module>;
module_map modules_{};
using module_map = std::map<uint64_t, mapped_module>;
module_map modules_{};
module_map::iterator get_module(const uint64_t address)
{
if (this->modules_.empty())
{
return this->modules_.end();
}
module_map::iterator get_module(const uint64_t address)
{
if (this->modules_.empty())
{
return this->modules_.end();
}
auto upper_bound = this->modules_.upper_bound(address);
if (upper_bound == this->modules_.begin())
{
return this->modules_.end();
}
auto upper_bound = this->modules_.upper_bound(address);
if (upper_bound == this->modules_.begin())
{
return this->modules_.end();
}
std::advance(upper_bound, -1);
return upper_bound;
}
std::advance(upper_bound, -1);
return upper_bound;
}
};

View File

@@ -7,265 +7,259 @@
namespace
{
uint64_t get_first_section_offset(const PENTHeaders_t<std::uint64_t>& nt_headers, const uint64_t nt_headers_offset)
{
const uint8_t* nt_headers_addr = reinterpret_cast<const uint8_t*>(&nt_headers);
size_t optional_header_offset = reinterpret_cast<uintptr_t>(&(nt_headers.OptionalHeader)) - reinterpret_cast<
uintptr_t>(&nt_headers);
size_t optional_header_size = nt_headers.FileHeader.SizeOfOptionalHeader;
const uint8_t* first_section_addr = nt_headers_addr + optional_header_offset + optional_header_size;
uint64_t get_first_section_offset(const PENTHeaders_t<std::uint64_t>& nt_headers, const uint64_t nt_headers_offset)
{
const uint8_t* nt_headers_addr = reinterpret_cast<const uint8_t*>(&nt_headers);
size_t optional_header_offset =
reinterpret_cast<uintptr_t>(&(nt_headers.OptionalHeader)) - reinterpret_cast<uintptr_t>(&nt_headers);
size_t optional_header_size = nt_headers.FileHeader.SizeOfOptionalHeader;
const uint8_t* first_section_addr = nt_headers_addr + optional_header_offset + optional_header_size;
const auto first_section_absolute = reinterpret_cast<uint64_t>(first_section_addr);
const auto absolute_base = reinterpret_cast<uint64_t>(&nt_headers);
return nt_headers_offset + (first_section_absolute - absolute_base);
}
const auto first_section_absolute = reinterpret_cast<uint64_t>(first_section_addr);
const auto absolute_base = reinterpret_cast<uint64_t>(&nt_headers);
return nt_headers_offset + (first_section_absolute - absolute_base);
}
std::vector<uint8_t> read_mapped_memory(const emulator& emu, const mapped_module& binary)
{
std::vector<uint8_t> memory{};
memory.resize(binary.size_of_image);
emu.read_memory(binary.image_base, memory.data(), memory.size());
std::vector<uint8_t> read_mapped_memory(const emulator& emu, const mapped_module& binary)
{
std::vector<uint8_t> memory{};
memory.resize(binary.size_of_image);
emu.read_memory(binary.image_base, memory.data(), memory.size());
return memory;
}
return memory;
}
void collect_exports(mapped_module& binary, const utils::safe_buffer_accessor<const uint8_t> buffer,
const PEOptionalHeader_t<std::uint64_t>& optional_header)
{
auto& export_directory_entry = optional_header.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
if (export_directory_entry.VirtualAddress == 0 || export_directory_entry.Size == 0)
{
return;
}
void collect_exports(mapped_module& binary, const utils::safe_buffer_accessor<const uint8_t> buffer,
const PEOptionalHeader_t<std::uint64_t>& optional_header)
{
auto& export_directory_entry = optional_header.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
if (export_directory_entry.VirtualAddress == 0 || export_directory_entry.Size == 0)
{
return;
}
const auto export_directory = buffer.as<IMAGE_EXPORT_DIRECTORY>(export_directory_entry.
VirtualAddress).get();
const auto export_directory = buffer.as<IMAGE_EXPORT_DIRECTORY>(export_directory_entry.VirtualAddress).get();
const auto names_count = export_directory.NumberOfNames;
//const auto function_count = export_directory.NumberOfFunctions;
const auto names_count = export_directory.NumberOfNames;
// const auto function_count = export_directory.NumberOfFunctions;
const auto names = buffer.as<DWORD>(export_directory.AddressOfNames);
const auto ordinals = buffer.as<WORD>(export_directory.AddressOfNameOrdinals);
const auto functions = buffer.as<DWORD>(export_directory.AddressOfFunctions);
const auto names = buffer.as<DWORD>(export_directory.AddressOfNames);
const auto ordinals = buffer.as<WORD>(export_directory.AddressOfNameOrdinals);
const auto functions = buffer.as<DWORD>(export_directory.AddressOfFunctions);
binary.exports.reserve(names_count);
binary.exports.reserve(names_count);
for (DWORD i = 0; i < names_count; i++)
{
const auto ordinal = ordinals.get(i);
for (DWORD i = 0; i < names_count; i++)
{
const auto ordinal = ordinals.get(i);
exported_symbol symbol{};
symbol.ordinal = export_directory.Base + ordinal;
symbol.rva = functions.get(ordinal);
symbol.address = binary.image_base + symbol.rva;
symbol.name = buffer.as_string(names.get(i));
exported_symbol symbol{};
symbol.ordinal = export_directory.Base + ordinal;
symbol.rva = functions.get(ordinal);
symbol.address = binary.image_base + symbol.rva;
symbol.name = buffer.as_string(names.get(i));
binary.exports.push_back(std::move(symbol));
}
binary.exports.push_back(std::move(symbol));
}
for (const auto& symbol : binary.exports)
{
binary.address_names.try_emplace(symbol.address, symbol.name);
}
}
for (const auto& symbol : binary.exports)
{
binary.address_names.try_emplace(symbol.address, symbol.name);
}
}
template <typename T>
requires(std::is_integral_v<T>)
void apply_relocation(const utils::safe_buffer_accessor<uint8_t> buffer, const uint64_t offset,
const uint64_t delta)
{
const auto obj = buffer.as<T>(offset);
const auto value = obj.get();
const auto new_value = value + static_cast<T>(delta);
obj.set(new_value);
}
template <typename T>
requires(std::is_integral_v<T>)
void apply_relocation(const utils::safe_buffer_accessor<uint8_t> buffer, const uint64_t offset,
const uint64_t delta)
{
const auto obj = buffer.as<T>(offset);
const auto value = obj.get();
const auto new_value = value + static_cast<T>(delta);
obj.set(new_value);
}
void apply_relocations(const mapped_module& binary, const utils::safe_buffer_accessor<uint8_t> buffer,
const PEOptionalHeader_t<std::uint64_t>& optional_header)
{
const auto delta = binary.image_base - optional_header.ImageBase;
if (delta == 0)
{
return;
}
void apply_relocations(const mapped_module& binary, const utils::safe_buffer_accessor<uint8_t> buffer,
const PEOptionalHeader_t<std::uint64_t>& optional_header)
{
const auto delta = binary.image_base - optional_header.ImageBase;
if (delta == 0)
{
return;
}
const auto directory = &optional_header.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC];
if (directory->Size == 0)
{
return;
}
const auto directory = &optional_header.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC];
if (directory->Size == 0)
{
return;
}
auto relocation_offset = directory->VirtualAddress;
const auto relocation_end = relocation_offset + directory->Size;
auto relocation_offset = directory->VirtualAddress;
const auto relocation_end = relocation_offset + directory->Size;
while (relocation_offset < relocation_end)
{
const auto relocation = buffer.as<IMAGE_BASE_RELOCATION>(relocation_offset).get();
while (relocation_offset < relocation_end)
{
const auto relocation = buffer.as<IMAGE_BASE_RELOCATION>(relocation_offset).get();
if (relocation.VirtualAddress <= 0 || relocation.SizeOfBlock <= sizeof(IMAGE_BASE_RELOCATION))
{
break;
}
if (relocation.VirtualAddress <= 0 || relocation.SizeOfBlock <= sizeof(IMAGE_BASE_RELOCATION))
{
break;
}
const auto data_size = relocation.SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION);
const auto entry_count = data_size / sizeof(uint16_t);
const auto data_size = relocation.SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION);
const auto entry_count = data_size / sizeof(uint16_t);
const auto entries = buffer.as<uint16_t>(relocation_offset + sizeof(IMAGE_BASE_RELOCATION));
const auto entries = buffer.as<uint16_t>(relocation_offset + sizeof(IMAGE_BASE_RELOCATION));
relocation_offset += relocation.SizeOfBlock;
relocation_offset += relocation.SizeOfBlock;
for (size_t i = 0; i < entry_count; ++i)
{
const auto entry = entries.get(i);
for (size_t i = 0; i < entry_count; ++i)
{
const auto entry = entries.get(i);
const int type = entry >> 12;
const auto offset = static_cast<uint16_t>(entry & 0xfff);
const auto total_offset = relocation.VirtualAddress + offset;
const int type = entry >> 12;
const auto offset = static_cast<uint16_t>(entry & 0xfff);
const auto total_offset = relocation.VirtualAddress + offset;
switch (type)
{
case IMAGE_REL_BASED_ABSOLUTE:
break;
switch (type)
{
case IMAGE_REL_BASED_ABSOLUTE:
break;
case IMAGE_REL_BASED_HIGHLOW:
apply_relocation<DWORD>(buffer, total_offset, delta);
break;
case IMAGE_REL_BASED_HIGHLOW:
apply_relocation<DWORD>(buffer, total_offset, delta);
break;
case IMAGE_REL_BASED_DIR64:
apply_relocation<ULONGLONG>(buffer, total_offset, delta);
break;
case IMAGE_REL_BASED_DIR64:
apply_relocation<ULONGLONG>(buffer, total_offset, delta);
break;
default:
throw std::runtime_error("Unknown relocation type: " + std::to_string(type));
}
}
}
}
default:
throw std::runtime_error("Unknown relocation type: " + std::to_string(type));
}
}
}
}
void map_sections(emulator& emu, mapped_module& binary,
const utils::safe_buffer_accessor<const uint8_t> buffer,
const PENTHeaders_t<std::uint64_t>& nt_headers, const uint64_t nt_headers_offset)
{
const auto first_section_offset = get_first_section_offset(nt_headers, nt_headers_offset);
const auto sections = buffer.as<IMAGE_SECTION_HEADER>(first_section_offset);
void map_sections(emulator& emu, mapped_module& binary, const utils::safe_buffer_accessor<const uint8_t> buffer,
const PENTHeaders_t<std::uint64_t>& nt_headers, const uint64_t nt_headers_offset)
{
const auto first_section_offset = get_first_section_offset(nt_headers, nt_headers_offset);
const auto sections = buffer.as<IMAGE_SECTION_HEADER>(first_section_offset);
for (size_t i = 0; i < nt_headers.FileHeader.NumberOfSections; ++i)
{
const auto section = sections.get(i);
const auto target_ptr = binary.image_base + section.VirtualAddress;
for (size_t i = 0; i < nt_headers.FileHeader.NumberOfSections; ++i)
{
const auto section = sections.get(i);
const auto target_ptr = binary.image_base + section.VirtualAddress;
if (section.SizeOfRawData > 0)
{
const auto size_of_data = std::min(section.SizeOfRawData, section.Misc.VirtualSize);
const auto* source_ptr = buffer.get_pointer_for_range(section.PointerToRawData, size_of_data);
emu.write_memory(target_ptr, source_ptr, size_of_data);
}
if (section.SizeOfRawData > 0)
{
const auto size_of_data = std::min(section.SizeOfRawData, section.Misc.VirtualSize);
const auto* source_ptr = buffer.get_pointer_for_range(section.PointerToRawData, size_of_data);
emu.write_memory(target_ptr, source_ptr, size_of_data);
}
auto permissions = memory_permission::none;
auto permissions = memory_permission::none;
if (section.Characteristics & IMAGE_SCN_MEM_EXECUTE)
{
permissions |= memory_permission::exec;
}
if (section.Characteristics & IMAGE_SCN_MEM_EXECUTE)
{
permissions |= memory_permission::exec;
}
if (section.Characteristics & IMAGE_SCN_MEM_READ)
{
permissions |= memory_permission::read;
}
if (section.Characteristics & IMAGE_SCN_MEM_READ)
{
permissions |= memory_permission::read;
}
if (section.Characteristics & IMAGE_SCN_MEM_WRITE)
{
permissions |= memory_permission::write;
}
if (section.Characteristics & IMAGE_SCN_MEM_WRITE)
{
permissions |= memory_permission::write;
}
const auto size_of_section = page_align_up(std::max(section.SizeOfRawData, section.Misc.VirtualSize));
const auto size_of_section = page_align_up(std::max(section.SizeOfRawData, section.Misc.VirtualSize));
emu.protect_memory(target_ptr, size_of_section, permissions, nullptr);
emu.protect_memory(target_ptr, size_of_section, permissions, nullptr);
mapped_section section_info{};
section_info.region.start = target_ptr;
section_info.region.length = size_of_section;
section_info.region.permissions = permissions;
mapped_section section_info{};
section_info.region.start = target_ptr;
section_info.region.length = size_of_section;
section_info.region.permissions = permissions;
for (size_t j = 0; j < sizeof(section.Name) && section.Name[j]; ++j)
{
section_info.name.push_back(static_cast<char>(section.Name[j]));
}
for (size_t j = 0; j < sizeof(section.Name) && section.Name[j]; ++j)
{
section_info.name.push_back(static_cast<char>(section.Name[j]));
}
binary.sections.push_back(std::move(section_info));
}
}
binary.sections.push_back(std::move(section_info));
}
}
}
mapped_module map_module_from_data(emulator& emu, const std::span<const uint8_t> data,
std::filesystem::path file)
mapped_module map_module_from_data(emulator& emu, const std::span<const uint8_t> data, std::filesystem::path file)
{
mapped_module binary{};
binary.path = std::move(file);
binary.name = binary.path.filename().string();
mapped_module binary{};
binary.path = std::move(file);
binary.name = binary.path.filename().string();
utils::safe_buffer_accessor buffer{data};
utils::safe_buffer_accessor buffer{data};
const auto dos_header = buffer.as<PEDosHeader_t>(0).get();
const auto nt_headers_offset = dos_header.e_lfanew;
const auto dos_header = buffer.as<PEDosHeader_t>(0).get();
const auto nt_headers_offset = dos_header.e_lfanew;
const auto nt_headers = buffer.as<PENTHeaders_t<std::uint64_t>>(nt_headers_offset).get();
auto& optional_header = nt_headers.OptionalHeader;
const auto nt_headers = buffer.as<PENTHeaders_t<std::uint64_t>>(nt_headers_offset).get();
auto& optional_header = nt_headers.OptionalHeader;
if (nt_headers.FileHeader.Machine != PEMachineType::AMD64)
{
throw std::runtime_error("Unsupported architecture!");
}
if (nt_headers.FileHeader.Machine != PEMachineType::AMD64)
{
throw std::runtime_error("Unsupported architecture!");
}
binary.image_base = optional_header.ImageBase;
binary.size_of_image = page_align_up(optional_header.SizeOfImage); // TODO: Sanitize
binary.image_base = optional_header.ImageBase;
binary.size_of_image = page_align_up(optional_header.SizeOfImage); // TODO: Sanitize
if (!emu.allocate_memory(binary.image_base, binary.size_of_image, memory_permission::read))
{
binary.image_base = emu.find_free_allocation_base(binary.size_of_image);
const auto is_dll = nt_headers.FileHeader.Characteristics & IMAGE_FILE_DLL;
const auto has_dynamic_base =
optional_header.DllCharacteristics & IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE;
const auto is_relocatable = is_dll || has_dynamic_base;
if (!emu.allocate_memory(binary.image_base, binary.size_of_image, memory_permission::read))
{
binary.image_base = emu.find_free_allocation_base(binary.size_of_image);
const auto is_dll = nt_headers.FileHeader.Characteristics & IMAGE_FILE_DLL;
const auto has_dynamic_base = optional_header.DllCharacteristics & IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE;
const auto is_relocatable = is_dll || has_dynamic_base;
if (!is_relocatable || !emu.allocate_memory(binary.image_base, binary.size_of_image,
memory_permission::read))
{
throw std::runtime_error("Memory range not allocatable");
}
}
if (!is_relocatable || !emu.allocate_memory(binary.image_base, binary.size_of_image, memory_permission::read))
{
throw std::runtime_error("Memory range not allocatable");
}
}
binary.entry_point = binary.image_base + optional_header.AddressOfEntryPoint;
binary.entry_point = binary.image_base + optional_header.AddressOfEntryPoint;
const auto* header_buffer = buffer.get_pointer_for_range(0, optional_header.SizeOfHeaders);
emu.write_memory(binary.image_base, header_buffer,
optional_header.SizeOfHeaders);
const auto* header_buffer = buffer.get_pointer_for_range(0, optional_header.SizeOfHeaders);
emu.write_memory(binary.image_base, header_buffer, optional_header.SizeOfHeaders);
map_sections(emu, binary, buffer, nt_headers, nt_headers_offset);
map_sections(emu, binary, buffer, nt_headers, nt_headers_offset);
auto mapped_memory = read_mapped_memory(emu, binary);
utils::safe_buffer_accessor<uint8_t> mapped_buffer{mapped_memory};
auto mapped_memory = read_mapped_memory(emu, binary);
utils::safe_buffer_accessor<uint8_t> mapped_buffer{mapped_memory};
apply_relocations(binary, mapped_buffer, optional_header);
collect_exports(binary, mapped_buffer, optional_header);
apply_relocations(binary, mapped_buffer, optional_header);
collect_exports(binary, mapped_buffer, optional_header);
emu.write_memory(binary.image_base, mapped_memory.data(), mapped_memory.size());
emu.write_memory(binary.image_base, mapped_memory.data(), mapped_memory.size());
return binary;
return binary;
}
mapped_module map_module_from_file(emulator& emu, std::filesystem::path file)
{
const auto data = utils::io::read_file(file);
if (data.empty())
{
throw std::runtime_error("Bad file data");
}
const auto data = utils::io::read_file(file);
if (data.empty())
{
throw std::runtime_error("Bad file data");
}
return map_module_from_data(emu, data, std::move(file));
return map_module_from_data(emu, data, std::move(file));
}
bool unmap_module(emulator& emu, const mapped_module& mod)
{
return emu.release_memory(mod.image_base, mod.size_of_image);
return emu.release_memory(mod.image_base, mod.size_of_image);
}

View File

@@ -3,8 +3,7 @@
#include <x64_emulator.hpp>
#include "mapped_module.hpp"
mapped_module map_module_from_data(emulator& emu, std::span<const uint8_t> data,
std::filesystem::path file);
mapped_module map_module_from_data(emulator& emu, std::span<const uint8_t> data, std::filesystem::path file);
mapped_module map_module_from_file(emulator& emu, std::filesystem::path file);
bool unmap_module(emulator& emu, const mapped_module& mod);

File diff suppressed because it is too large Load Diff

View File

@@ -5,216 +5,216 @@
namespace
{
constexpr uint64_t MAIN_ROOT_OFFSET = 0x1000;
constexpr uint64_t MAIN_KEY_BLOCK_OFFSET = MAIN_ROOT_OFFSET + 0x20;
constexpr uint64_t MAIN_ROOT_OFFSET = 0x1000;
constexpr uint64_t MAIN_KEY_BLOCK_OFFSET = MAIN_ROOT_OFFSET + 0x20;
struct offset_entry_t
{
int32_t offset;
int32_t hash;
};
struct offset_entry_t
{
int32_t offset;
int32_t hash;
};
struct offsets_t
{
int32_t block_size;
char block_type[2];
int16_t count;
offset_entry_t entries[1];
};
struct offsets_t
{
int32_t block_size;
char block_type[2];
int16_t count;
offset_entry_t entries[1];
};
struct key_block_t
{
int32_t block_size;
char block_type[2];
uint8_t dummya[18];
int32_t subkey_count;
uint8_t dummyb[4];
int32_t subkeys;
uint8_t dummyc[4];
int32_t value_count;
int32_t offsets;
uint8_t dummyd[28];
int16_t len;
int16_t du;
char name[255];
};
struct key_block_t
{
int32_t block_size;
char block_type[2];
uint8_t dummya[18];
int32_t subkey_count;
uint8_t dummyb[4];
int32_t subkeys;
uint8_t dummyc[4];
int32_t value_count;
int32_t offsets;
uint8_t dummyd[28];
int16_t len;
int16_t du;
char name[255];
};
struct value_block_t
{
int32_t block_size;
char block_type[2];
int16_t name_len;
int32_t size;
int32_t offset;
int32_t value_type;
int16_t flags;
int16_t dummy;
char name[255];
};
struct value_block_t
{
int32_t block_size;
char block_type[2];
int16_t name_len;
int32_t size;
int32_t offset;
int32_t value_type;
int16_t flags;
int16_t dummy;
char name[255];
};
bool read_file_data_safe(std::ifstream& file, const uint64_t offset, void* buffer, const size_t size)
{
if (file.bad())
{
return false;
}
bool read_file_data_safe(std::ifstream& file, const uint64_t offset, void* buffer, const size_t size)
{
if (file.bad())
{
return false;
}
file.clear();
file.clear();
if (!file.good())
{
return false;
}
if (!file.good())
{
return false;
}
file.seekg(static_cast<std::streamoff>(offset));
file.seekg(static_cast<std::streamoff>(offset));
if (!file.good())
{
return false;
}
if (!file.good())
{
return false;
}
file.read(static_cast<char*>(buffer), static_cast<std::streamsize>(size));
file.read(static_cast<char*>(buffer), static_cast<std::streamsize>(size));
return file.good();
}
return file.good();
}
void read_file_data(std::ifstream& file, const uint64_t offset, void* buffer, const size_t size)
{
if (!read_file_data_safe(file, offset, buffer, size))
{
throw std::runtime_error("Failed to read file data");
}
}
void read_file_data(std::ifstream& file, const uint64_t offset, void* buffer, const size_t size)
{
if (!read_file_data_safe(file, offset, buffer, size))
{
throw std::runtime_error("Failed to read file data");
}
}
std::vector<std::byte> read_file_data(std::ifstream& file, const uint64_t offset, const size_t size)
{
std::vector<std::byte> result{};
result.resize(size);
std::vector<std::byte> read_file_data(std::ifstream& file, const uint64_t offset, const size_t size)
{
std::vector<std::byte> result{};
result.resize(size);
read_file_data(file, offset, result.data(), size);
return result;
}
read_file_data(file, offset, result.data(), size);
return result;
}
std::string read_file_data_string(std::ifstream& file, const uint64_t offset, const size_t size)
{
std::string result{};
result.resize(size);
std::string read_file_data_string(std::ifstream& file, const uint64_t offset, const size_t size)
{
std::string result{};
result.resize(size);
read_file_data(file, offset, result.data(), size);
return result;
}
read_file_data(file, offset, result.data(), size);
return result;
}
template <typename T>
requires(std::is_trivially_copyable_v<T>)
T read_file_object(std::ifstream& file, const uint64_t offset, const size_t array_index = 0)
{
T obj{};
read_file_data(file, offset + (array_index * sizeof(T)), &obj, sizeof(T));
return obj;
}
template <typename T>
requires(std::is_trivially_copyable_v<T>)
T read_file_object(std::ifstream& file, const uint64_t offset, const size_t array_index = 0)
{
T obj{};
read_file_data(file, offset + (array_index * sizeof(T)), &obj, sizeof(T));
return obj;
}
hive_key parse_root_block(std::ifstream& file, const std::filesystem::path& file_path)
{
try
{
if (read_file_data_string(file, 0, 4) != "regf")
{
throw std::runtime_error("Invalid signature");
}
hive_key parse_root_block(std::ifstream& file, const std::filesystem::path& file_path)
{
try
{
if (read_file_data_string(file, 0, 4) != "regf")
{
throw std::runtime_error("Invalid signature");
}
const auto key_block = read_file_object<key_block_t>(file, MAIN_KEY_BLOCK_OFFSET);
const auto key_block = read_file_object<key_block_t>(file, MAIN_KEY_BLOCK_OFFSET);
return {key_block.subkeys, key_block.value_count, key_block.offsets};
}
catch (const std::exception& e)
{
throw std::runtime_error("Bad hive file '" + file_path.string() + "': " + e.what());
}
}
return {key_block.subkeys, key_block.value_count, key_block.offsets};
}
catch (const std::exception& e)
{
throw std::runtime_error("Bad hive file '" + file_path.string() + "': " + e.what());
}
}
}
const hive_value* hive_key::get_value(std::ifstream& file, const std::string_view name)
{
this->parse(file);
this->parse(file);
const auto entry = this->values_.find(name);
if (entry == this->values_.end())
{
return nullptr;
}
const auto entry = this->values_.find(name);
if (entry == this->values_.end())
{
return nullptr;
}
auto& value = entry->second;
auto& value = entry->second;
if (!value.parsed)
{
value.data = read_file_data(file, MAIN_ROOT_OFFSET + value.data_offset, value.data_length);
value.parsed = true;
}
if (!value.parsed)
{
value.data = read_file_data(file, MAIN_ROOT_OFFSET + value.data_offset, value.data_length);
value.parsed = true;
}
return &value;
return &value;
}
void hive_key::parse(std::ifstream& file)
{
if (this->parsed_)
{
return;
}
if (this->parsed_)
{
return;
}
this->parsed_ = true;
this->parsed_ = true;
// Values
// Values
for (auto i = 0; i < this->value_count_; i++)
{
const auto offset = read_file_object<int>(file, MAIN_ROOT_OFFSET + this->value_offsets_ + 4, i);
const auto value = read_file_object<value_block_t>(file, MAIN_ROOT_OFFSET + offset);
for (auto i = 0; i < this->value_count_; i++)
{
const auto offset = read_file_object<int>(file, MAIN_ROOT_OFFSET + this->value_offsets_ + 4, i);
const auto value = read_file_object<value_block_t>(file, MAIN_ROOT_OFFSET + offset);
std::string value_name(value.name, std::min(value.name_len, static_cast<short>(sizeof(value.name))));
std::string value_name(value.name, std::min(value.name_len, static_cast<short>(sizeof(value.name))));
raw_hive_value raw_value{};
raw_value.parsed = false;
raw_value.type = value.value_type;
raw_value.name = value_name;
raw_value.data_length = value.size & 0xffff;
raw_value.data_offset = value.offset + 4;
raw_hive_value raw_value{};
raw_value.parsed = false;
raw_value.type = value.value_type;
raw_value.name = value_name;
raw_value.data_length = value.size & 0xffff;
raw_value.data_offset = value.offset + 4;
if (value.size & 1 << 31)
{
raw_value.data_offset = offset + static_cast<int>(offsetof(value_block_t, offset));
}
if (value.size & 1 << 31)
{
raw_value.data_offset = offset + static_cast<int>(offsetof(value_block_t, offset));
}
utils::string::to_lower_inplace(value_name);
this->values_[std::move(value_name)] = std::move(raw_value);
}
utils::string::to_lower_inplace(value_name);
this->values_[std::move(value_name)] = std::move(raw_value);
}
// Subkeys
// Subkeys
const auto item = read_file_object<offsets_t>(file, MAIN_ROOT_OFFSET + this->subkey_block_offset_);
const auto item = read_file_object<offsets_t>(file, MAIN_ROOT_OFFSET + this->subkey_block_offset_);
if (item.block_type[1] != 'f' && item.block_type[1] != 'h')
{
return;
}
if (item.block_type[1] != 'f' && item.block_type[1] != 'h')
{
return;
}
const auto entry_offsets = this->subkey_block_offset_ + offsetof(offsets_t, entries);
const auto entry_offsets = this->subkey_block_offset_ + offsetof(offsets_t, entries);
for (short i = 0; i < item.count; ++i)
{
const auto offset_entry = read_file_object<offset_entry_t>(file, MAIN_ROOT_OFFSET + entry_offsets, i);
for (short i = 0; i < item.count; ++i)
{
const auto offset_entry = read_file_object<offset_entry_t>(file, MAIN_ROOT_OFFSET + entry_offsets, i);
const auto subkey_block_offset = MAIN_ROOT_OFFSET + offset_entry.offset;
const auto subkey = read_file_object<key_block_t>(file, subkey_block_offset);
const auto subkey_block_offset = MAIN_ROOT_OFFSET + offset_entry.offset;
const auto subkey = read_file_object<key_block_t>(file, subkey_block_offset);
std::string subkey_name(subkey.name, std::min(subkey.len, static_cast<int16_t>(sizeof(subkey.name))));
utils::string::to_lower_inplace(subkey_name);
std::string subkey_name(subkey.name, std::min(subkey.len, static_cast<int16_t>(sizeof(subkey.name))));
utils::string::to_lower_inplace(subkey_name);
this->sub_keys_.emplace(std::move(subkey_name), hive_key{subkey.subkeys, subkey.value_count, subkey.offsets});
}
this->sub_keys_.emplace(std::move(subkey_name), hive_key{subkey.subkeys, subkey.value_count, subkey.offsets});
}
}
hive_parser::hive_parser(const std::filesystem::path& file_path)
: file_(file_path, std::ios::binary)
, root_key_(parse_root_block(file_, file_path))
: file_(file_path, std::ios::binary),
root_key_(parse_root_block(file_, file_path))
{
}

View File

@@ -8,95 +8,95 @@
struct hive_value
{
uint32_t type{};
std::string name{};
std::vector<std::byte> data{};
uint32_t type{};
std::string name{};
std::vector<std::byte> data{};
};
class hive_key
{
public:
hive_key(const int subkey_block_offset, const int value_count, const int value_offsets)
: subkey_block_offset_(subkey_block_offset)
, value_count_(value_count)
, value_offsets_(value_offsets)
{
}
public:
hive_key(const int subkey_block_offset, const int value_count, const int value_offsets)
: subkey_block_offset_(subkey_block_offset),
value_count_(value_count),
value_offsets_(value_offsets)
{
}
utils::unordered_string_map<hive_key>& get_sub_keys(std::ifstream& file)
{
this->parse(file);
return this->sub_keys_;
}
utils::unordered_string_map<hive_key>& get_sub_keys(std::ifstream& file)
{
this->parse(file);
return this->sub_keys_;
}
hive_key* get_sub_key(std::ifstream& file, const std::string_view name)
{
auto& sub_keys = this->get_sub_keys(file);
const auto entry = sub_keys.find(name);
hive_key* get_sub_key(std::ifstream& file, const std::string_view name)
{
auto& sub_keys = this->get_sub_keys(file);
const auto entry = sub_keys.find(name);
if (entry == sub_keys.end())
{
return nullptr;
}
if (entry == sub_keys.end())
{
return nullptr;
}
return &entry->second;
}
return &entry->second;
}
const hive_value* get_value(std::ifstream& file, const std::string_view name);
const hive_value* get_value(std::ifstream& file, const std::string_view name);
private:
struct raw_hive_value : hive_value
{
bool parsed{false};
int data_offset{};
size_t data_length{};
};
private:
struct raw_hive_value : hive_value
{
bool parsed{false};
int data_offset{};
size_t data_length{};
};
bool parsed_{false};
utils::unordered_string_map<hive_key> sub_keys_{};
utils::unordered_string_map<raw_hive_value> values_{};
bool parsed_{false};
utils::unordered_string_map<hive_key> sub_keys_{};
utils::unordered_string_map<raw_hive_value> values_{};
const int subkey_block_offset_{};
const int value_count_{};
const int value_offsets_{};
const int subkey_block_offset_{};
const int value_count_{};
const int value_offsets_{};
void parse(std::ifstream& file);
void parse(std::ifstream& file);
};
class hive_parser
{
public:
explicit hive_parser(const std::filesystem::path& file_path);
public:
explicit hive_parser(const std::filesystem::path& file_path);
[[nodiscard]] hive_key* get_sub_key(const std::filesystem::path& key)
{
hive_key* current_key = &this->root_key_;
[[nodiscard]] hive_key* get_sub_key(const std::filesystem::path& key)
{
hive_key* current_key = &this->root_key_;
for (const auto& key_part : key)
{
if (!current_key)
{
return nullptr;
}
for (const auto& key_part : key)
{
if (!current_key)
{
return nullptr;
}
current_key = current_key->get_sub_key(this->file_, key_part.string());
}
current_key = current_key->get_sub_key(this->file_, key_part.string());
}
return current_key;
}
return current_key;
}
[[nodiscard]] const hive_value* get_value(const std::filesystem::path& key, const std::string_view name)
{
auto* sub_key = this->get_sub_key(key);
if (!sub_key)
{
return nullptr;
}
[[nodiscard]] const hive_value* get_value(const std::filesystem::path& key, const std::string_view name)
{
auto* sub_key = this->get_sub_key(key);
if (!sub_key)
{
return nullptr;
}
return sub_key->get_value(this->file_, name);
}
return sub_key->get_value(this->file_, name);
}
private:
std::ifstream file_{};
hive_key root_key_;
private:
std::ifstream file_{};
hive_key root_key_;
};

View File

@@ -7,33 +7,33 @@
namespace
{
std::filesystem::path canonicalize_path(const std::filesystem::path& key)
{
auto path = key.lexically_normal().wstring();
return utils::string::to_lower_consume(path);
}
std::filesystem::path canonicalize_path(const std::filesystem::path& key)
{
auto path = key.lexically_normal().wstring();
return utils::string::to_lower_consume(path);
}
bool is_subpath(const std::filesystem::path& root, const std::filesystem::path& p)
{
auto root_it = root.begin();
auto p_it = p.begin();
bool is_subpath(const std::filesystem::path& root, const std::filesystem::path& p)
{
auto root_it = root.begin();
auto p_it = p.begin();
for (; root_it != root.end(); ++root_it, ++p_it)
{
if (p_it == p.end() || *root_it != *p_it)
{
return false;
}
}
for (; root_it != root.end(); ++root_it, ++p_it)
{
if (p_it == p.end() || *root_it != *p_it)
{
return false;
}
}
return true;
}
return true;
}
void register_hive(registry_manager::hive_map& hives,
const std::filesystem::path& key, const std::filesystem::path& file)
{
hives[canonicalize_path(key)] = std::make_unique<hive_parser>(file);
}
void register_hive(registry_manager::hive_map& hives, const std::filesystem::path& key,
const std::filesystem::path& file)
{
hives[canonicalize_path(key)] = std::make_unique<hive_parser>(file);
}
}
registry_manager::registry_manager() = default;
@@ -42,130 +42,130 @@ registry_manager::registry_manager(registry_manager&&) noexcept = default;
registry_manager& registry_manager::operator=(registry_manager&&) noexcept = default;
registry_manager::registry_manager(const std::filesystem::path& hive_path)
: hive_path_(absolute(hive_path))
: hive_path_(absolute(hive_path))
{
this->setup();
this->setup();
}
void registry_manager::setup()
{
this->path_mapping_.clear();
this->hives_.clear();
this->path_mapping_.clear();
this->hives_.clear();
const std::filesystem::path root = R"(\registry)";
const std::filesystem::path machine = root / "machine";
const std::filesystem::path root = R"(\registry)";
const std::filesystem::path machine = root / "machine";
register_hive(this->hives_, machine / "system", this->hive_path_ / "SYSTEM");
register_hive(this->hives_, machine / "security", this->hive_path_ / "SECURITY");
register_hive(this->hives_, machine / "sam", this->hive_path_ / "SAM");
register_hive(this->hives_, machine / "software", this->hive_path_ / "SOFTWARE");
register_hive(this->hives_, machine / "system", this->hive_path_ / "SYSTEM");
register_hive(this->hives_, machine / "hardware", this->hive_path_ / "HARDWARE");
register_hive(this->hives_, machine / "system", this->hive_path_ / "SYSTEM");
register_hive(this->hives_, machine / "security", this->hive_path_ / "SECURITY");
register_hive(this->hives_, machine / "sam", this->hive_path_ / "SAM");
register_hive(this->hives_, machine / "software", this->hive_path_ / "SOFTWARE");
register_hive(this->hives_, machine / "system", this->hive_path_ / "SYSTEM");
register_hive(this->hives_, machine / "hardware", this->hive_path_ / "HARDWARE");
register_hive(this->hives_, root / "user", this->hive_path_ / "NTUSER.dat");
register_hive(this->hives_, root / "user", this->hive_path_ / "NTUSER.dat");
this->add_path_mapping(machine / "system" / "CurrentControlSet", machine / "system" / "ControlSet001");
this->add_path_mapping(machine / "system" / "CurrentControlSet", machine / "system" / "ControlSet001");
}
void registry_manager::serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->hive_path_);
buffer.write(this->hive_path_);
}
void registry_manager::deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->hive_path_);
this->setup();
buffer.read(this->hive_path_);
this->setup();
}
std::filesystem::path registry_manager::normalize_path(const std::filesystem::path& path) const
{
auto canonical_path = canonicalize_path(path);
auto canonical_path = canonicalize_path(path);
for (const auto& mapping : this->path_mapping_)
{
if (is_subpath(mapping.first, canonical_path))
{
return mapping.second / canonical_path.lexically_relative(mapping.first);
}
}
for (const auto& mapping : this->path_mapping_)
{
if (is_subpath(mapping.first, canonical_path))
{
return mapping.second / canonical_path.lexically_relative(mapping.first);
}
}
return canonical_path;
return canonical_path;
}
void registry_manager::add_path_mapping(const std::filesystem::path& key, const std::filesystem::path& value)
{
this->path_mapping_[canonicalize_path(key)] = canonicalize_path(value);
this->path_mapping_[canonicalize_path(key)] = canonicalize_path(value);
}
std::optional<registry_key> registry_manager::get_key(const std::filesystem::path& key)
{
const auto normal_key = this->normalize_path(key);
const auto normal_key = this->normalize_path(key);
if (is_subpath(normal_key, "\\registry\\machine"))
{
registry_key reg_key{};
reg_key.hive = normal_key;
return {std::move(reg_key)};
}
if (is_subpath(normal_key, "\\registry\\machine"))
{
registry_key reg_key{};
reg_key.hive = normal_key;
return {std::move(reg_key)};
}
const auto iterator = this->find_hive(normal_key);
if (iterator == this->hives_.end())
{
return {};
}
const auto iterator = this->find_hive(normal_key);
if (iterator == this->hives_.end())
{
return {};
}
registry_key reg_key{};
reg_key.hive = iterator->first;
reg_key.path = normal_key.lexically_relative(reg_key.hive);
registry_key reg_key{};
reg_key.hive = iterator->first;
reg_key.path = normal_key.lexically_relative(reg_key.hive);
if (reg_key.path.empty())
{
return {std::move(reg_key)};
}
if (reg_key.path.empty())
{
return {std::move(reg_key)};
}
const auto entry = iterator->second->get_sub_key(reg_key.path);
if (!entry)
{
return std::nullopt;
}
const auto entry = iterator->second->get_sub_key(reg_key.path);
if (!entry)
{
return std::nullopt;
}
return {std::move(reg_key)};
return {std::move(reg_key)};
}
std::optional<registry_value> registry_manager::get_value(const registry_key& key, std::string name)
{
utils::string::to_lower_inplace(name);
utils::string::to_lower_inplace(name);
const auto iterator = this->hives_.find(key.hive);
if (iterator == this->hives_.end())
{
return std::nullopt;
}
const auto iterator = this->hives_.find(key.hive);
if (iterator == this->hives_.end())
{
return std::nullopt;
}
auto* entry = iterator->second->get_value(key.path, name);
if (!entry)
{
return std::nullopt;
}
auto* entry = iterator->second->get_value(key.path, name);
if (!entry)
{
return std::nullopt;
}
registry_value v{};
v.type = entry->type;
v.name = entry->name;
v.data = entry->data;
registry_value v{};
v.type = entry->type;
v.name = entry->name;
v.data = entry->data;
return v;
return v;
}
registry_manager::hive_map::iterator registry_manager::find_hive(const std::filesystem::path& key)
{
for (auto i = this->hives_.begin(); i != this->hives_.end(); ++i)
{
if (is_subpath(i->first, key))
{
return i;
}
}
for (auto i = this->hives_.begin(); i != this->hives_.end(); ++i)
{
if (is_subpath(i->first, key))
{
return i;
}
}
return this->hives_.end();
return this->hives_.end();
}

View File

@@ -6,61 +6,60 @@
struct registry_key
{
std::filesystem::path hive{};
std::filesystem::path path{};
std::filesystem::path hive{};
std::filesystem::path path{};
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->hive);
buffer.write(this->path);
}
void serialize(utils::buffer_serializer& buffer) const
{
buffer.write(this->hive);
buffer.write(this->path);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->hive);
buffer.read(this->path);
}
void deserialize(utils::buffer_deserializer& buffer)
{
buffer.read(this->hive);
buffer.read(this->path);
}
};
struct registry_value
{
uint32_t type;
std::string_view name;
std::span<const std::byte> data;
uint32_t type;
std::string_view name;
std::span<const std::byte> data;
};
class registry_manager
{
public:
using hive_ptr = std::unique_ptr<hive_parser>;
using hive_map = std::unordered_map<std::filesystem::path, hive_ptr>;
public:
using hive_ptr = std::unique_ptr<hive_parser>;
using hive_map = std::unordered_map<std::filesystem::path, hive_ptr>;
registry_manager();
registry_manager(const std::filesystem::path& hive_path);
~registry_manager();
registry_manager();
registry_manager(const std::filesystem::path& hive_path);
~registry_manager();
registry_manager(registry_manager&&) noexcept;
registry_manager& operator=(registry_manager&&) noexcept;
registry_manager(registry_manager&&) noexcept;
registry_manager& operator=(registry_manager&&) noexcept;
registry_manager(const registry_manager&) = delete;
registry_manager& operator=(const registry_manager&) = delete;
registry_manager(const registry_manager&) = delete;
registry_manager& operator=(const registry_manager&) = delete;
void serialize(utils::buffer_serializer& buffer) const;
void deserialize(utils::buffer_deserializer& buffer);
void serialize(utils::buffer_serializer& buffer) const;
void deserialize(utils::buffer_deserializer& buffer);
std::optional<registry_key> get_key(const std::filesystem::path& key);
std::optional<registry_value> get_value(const registry_key& key, std::string name);
std::optional<registry_key> get_key(const std::filesystem::path& key);
std::optional<registry_value> get_value(const registry_key& key, std::string name);
private:
std::filesystem::path hive_path_{};
hive_map hives_{};
std::unordered_map<std::filesystem::path, std::filesystem::path> path_mapping_{};
private:
std::filesystem::path hive_path_{};
hive_map hives_{};
std::unordered_map<std::filesystem::path, std::filesystem::path> path_mapping_{};
std::filesystem::path normalize_path(const std::filesystem::path& path) const;
void add_path_mapping(const std::filesystem::path& key, const std::filesystem::path& value);
std::filesystem::path normalize_path(const std::filesystem::path& path) const;
void add_path_mapping(const std::filesystem::path& key, const std::filesystem::path& value);
hive_map::iterator find_hive(const std::filesystem::path& key);
hive_map::iterator find_hive(const std::filesystem::path& key);
void setup();
void setup();
};

View File

@@ -2,32 +2,32 @@
#ifdef _WIN32
#pragma warning(push)
#pragma warning(disable: 4005)
#pragma warning(disable: 4127)
#pragma warning(disable: 4201)
#pragma warning(disable: 4244)
#pragma warning(disable: 4245)
#pragma warning(disable: 4324)
#pragma warning(disable: 4458)
#pragma warning(disable: 4471)
#pragma warning(disable: 4505)
#pragma warning(disable: 4702)
#pragma warning(disable: 4996)
#pragma warning(disable: 5054)
#pragma warning(disable: 6011)
#pragma warning(disable: 6297)
#pragma warning(disable: 6385)
#pragma warning(disable: 6386)
#pragma warning(disable: 6387)
#pragma warning(disable: 26110)
#pragma warning(disable: 26451)
#pragma warning(disable: 26444)
#pragma warning(disable: 26451)
#pragma warning(disable: 26489)
#pragma warning(disable: 26495)
#pragma warning(disable: 26498)
#pragma warning(disable: 26812)
#pragma warning(disable: 28020)
#pragma warning(disable : 4005)
#pragma warning(disable : 4127)
#pragma warning(disable : 4201)
#pragma warning(disable : 4244)
#pragma warning(disable : 4245)
#pragma warning(disable : 4324)
#pragma warning(disable : 4458)
#pragma warning(disable : 4471)
#pragma warning(disable : 4505)
#pragma warning(disable : 4702)
#pragma warning(disable : 4996)
#pragma warning(disable : 5054)
#pragma warning(disable : 6011)
#pragma warning(disable : 6297)
#pragma warning(disable : 6385)
#pragma warning(disable : 6386)
#pragma warning(disable : 6387)
#pragma warning(disable : 26110)
#pragma warning(disable : 26451)
#pragma warning(disable : 26444)
#pragma warning(disable : 26451)
#pragma warning(disable : 26489)
#pragma warning(disable : 26495)
#pragma warning(disable : 26498)
#pragma warning(disable : 26812)
#pragma warning(disable : 28020)
#pragma warning(pop)
#endif

View File

@@ -3,145 +3,138 @@
static void serialize(utils::buffer_serializer& buffer, const syscall_handler_entry& obj)
{
buffer.write(obj.name);
buffer.write(obj.name);
}
static void deserialize(utils::buffer_deserializer& buffer, syscall_handler_entry& obj)
{
buffer.read(obj.name);
obj.handler = nullptr;
buffer.read(obj.name);
obj.handler = nullptr;
}
void syscall_dispatcher::serialize(utils::buffer_serializer& buffer) const
{
buffer.write_map(this->handlers_);
buffer.write_map(this->handlers_);
}
void syscall_dispatcher::deserialize(utils::buffer_deserializer& buffer)
{
buffer.read_map(this->handlers_);
this->add_handlers();
buffer.read_map(this->handlers_);
this->add_handlers();
}
void syscall_dispatcher::setup(const exported_symbols& ntdll_exports, std::span<const std::byte> ntdll_data,
const exported_symbols& win32u_exports, std::span<const std::byte> win32u_data)
{
this->handlers_ = {};
this->handlers_ = {};
const auto ntdll_syscalls = find_syscalls(ntdll_exports, ntdll_data);
const auto win32u_syscalls = find_syscalls(win32u_exports, win32u_data);
const auto ntdll_syscalls = find_syscalls(ntdll_exports, ntdll_data);
const auto win32u_syscalls = find_syscalls(win32u_exports, win32u_data);
map_syscalls(this->handlers_, ntdll_syscalls);
map_syscalls(this->handlers_, win32u_syscalls);
map_syscalls(this->handlers_, ntdll_syscalls);
map_syscalls(this->handlers_, win32u_syscalls);
this->add_handlers();
this->add_handlers();
}
void syscall_dispatcher::add_handlers()
{
std::map<std::string, syscall_handler> handler_mapping{};
std::map<std::string, syscall_handler> handler_mapping{};
syscall_dispatcher::add_handlers(handler_mapping);
syscall_dispatcher::add_handlers(handler_mapping);
for (auto& entry : this->handlers_)
{
const auto handler = handler_mapping.find(entry.second.name);
if (handler == handler_mapping.end())
{
continue;
}
for (auto& entry : this->handlers_)
{
const auto handler = handler_mapping.find(entry.second.name);
if (handler == handler_mapping.end())
{
continue;
}
entry.second.handler = handler->second;
entry.second.handler = handler->second;
#ifndef NDEBUG
handler_mapping.erase(handler);
handler_mapping.erase(handler);
#endif
}
}
}
void syscall_dispatcher::dispatch(windows_emulator& win_emu)
{
auto& emu = win_emu.emu();
auto& context = win_emu.process();
auto& emu = win_emu.emu();
auto& context = win_emu.process();
const auto address = emu.read_instruction_pointer();
const auto syscall_id = emu.reg<uint32_t>(x64_register::eax);
const auto address = emu.read_instruction_pointer();
const auto syscall_id = emu.reg<uint32_t>(x64_register::eax);
const syscall_context c{win_emu, emu, context, true};
const syscall_context c{win_emu, emu, context, true};
try
{
const auto entry = this->handlers_.find(syscall_id);
if (entry == this->handlers_.end())
{
printf("Unknown syscall: 0x%X\n", syscall_id);
c.emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
c.emu.stop();
return;
}
try
{
const auto entry = this->handlers_.find(syscall_id);
if (entry == this->handlers_.end())
{
printf("Unknown syscall: 0x%X\n", syscall_id);
c.emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
c.emu.stop();
return;
}
if (!entry->second.handler)
{
printf("Unimplemented syscall: %s - 0x%X\n", entry->second.name.c_str(), syscall_id);
c.emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
c.emu.stop();
return;
}
if (!entry->second.handler)
{
printf("Unimplemented syscall: %s - 0x%X\n", entry->second.name.c_str(), syscall_id);
c.emu.reg<uint64_t>(x64_register::rax, STATUS_NOT_SUPPORTED);
c.emu.stop();
return;
}
const auto* mod = context.mod_manager.find_by_address(address);
if (mod != context.ntdll && mod != context.win32u)
{
win_emu.log.print(color::blue, "Executing inline syscall: %s (0x%X) at 0x%" PRIx64 " (%s)\n",
entry->second.name.c_str(), syscall_id, address, mod ? mod->name.c_str() : "<N/A>");
}
else
{
if (mod->is_within(context.previous_ip))
{
const auto rsp = c.emu.read_stack_pointer();
const auto return_address = c.emu.read_memory<uint64_t>(rsp);
const auto* mod_name = context.mod_manager.find_name(return_address);
const auto* mod = context.mod_manager.find_by_address(address);
if (mod != context.ntdll && mod != context.win32u)
{
win_emu.log.print(color::blue, "Executing inline syscall: %s (0x%X) at 0x%" PRIx64 " (%s)\n",
entry->second.name.c_str(),
syscall_id,
address, mod ? mod->name.c_str() : "<N/A>");
}
else
{
if (mod->is_within(context.previous_ip))
{
const auto rsp = c.emu.read_stack_pointer();
const auto return_address = c.emu.read_memory<uint64_t>(rsp);
const auto* mod_name = context.mod_manager.find_name(return_address);
win_emu.log.print(color::dark_gray,
"Executing syscall: %s (0x%X) at 0x%" PRIx64 " via 0x%" PRIx64 " (%s)\n",
entry->second.name.c_str(), syscall_id, address, return_address, mod_name);
}
else
{
const auto* previous_mod = context.mod_manager.find_by_address(context.previous_ip);
win_emu.log.print(color::blue,
"Crafted out-of-line syscall: %s (0x%X) at 0x%" PRIx64 " (%s) via 0x%" PRIx64
" (%s)\n",
entry->second.name.c_str(), syscall_id, address, mod ? mod->name.c_str() : "<N/A>",
context.previous_ip, previous_mod ? previous_mod->name.c_str() : "<N/A>");
}
}
win_emu.log.print(color::dark_gray,
"Executing syscall: %s (0x%X) at 0x%" PRIx64 " via 0x%" PRIx64 " (%s)\n",
entry->second.name.c_str(),
syscall_id, address, return_address, mod_name);
}
else
{
const auto* previous_mod = context.mod_manager.find_by_address(context.previous_ip);
win_emu.log.print(color::blue,
"Crafted out-of-line syscall: %s (0x%X) at 0x%" PRIx64 " (%s) via 0x%" PRIx64
" (%s)\n",
entry->second.name.c_str(),
syscall_id,
address, mod ? mod->name.c_str() : "<N/A>", context.previous_ip,
previous_mod ? previous_mod->name.c_str() : "<N/A>");
}
}
entry->second.handler(c);
}
catch (std::exception& e)
{
printf("Syscall threw an exception: %X (0x%" PRIx64 ") - %s\n", syscall_id, address, e.what());
emu.reg<uint64_t>(x64_register::rax, STATUS_UNSUCCESSFUL);
emu.stop();
}
catch (...)
{
printf("Syscall threw an unknown exception: %X (0x%" PRIx64 ")\n", syscall_id, address);
emu.reg<uint64_t>(x64_register::rax, STATUS_UNSUCCESSFUL);
emu.stop();
}
entry->second.handler(c);
}
catch (std::exception& e)
{
printf("Syscall threw an exception: %X (0x%" PRIx64 ") - %s\n", syscall_id, address, e.what());
emu.reg<uint64_t>(x64_register::rax, STATUS_UNSUCCESSFUL);
emu.stop();
}
catch (...)
{
printf("Syscall threw an unknown exception: %X (0x%" PRIx64 ")\n", syscall_id, address);
emu.reg<uint64_t>(x64_register::rax, STATUS_UNSUCCESSFUL);
emu.stop();
}
}
syscall_dispatcher::syscall_dispatcher(const exported_symbols& ntdll_exports, std::span<const std::byte> ntdll_data,
const exported_symbols& win32u_exports, std::span<const std::byte> win32u_data)
{
this->setup(ntdll_exports, ntdll_data, win32u_exports, win32u_data);
this->setup(ntdll_exports, ntdll_data, win32u_exports, win32u_data);
}

View File

@@ -3,39 +3,39 @@
#include "process_context.hpp"
struct syscall_context;
using syscall_handler = void(*)(const syscall_context& c);
using syscall_handler = void (*)(const syscall_context& c);
struct syscall_handler_entry
{
syscall_handler handler{};
std::string name{};
syscall_handler handler{};
std::string name{};
};
class windows_emulator;
class syscall_dispatcher
{
public:
syscall_dispatcher() = default;
syscall_dispatcher(const exported_symbols& ntdll_exports, std::span<const std::byte> ntdll_data,
const exported_symbols& win32u_exports, std::span<const std::byte> win32u_data);
public:
syscall_dispatcher() = default;
syscall_dispatcher(const exported_symbols& ntdll_exports, std::span<const std::byte> ntdll_data,
const exported_symbols& win32u_exports, std::span<const std::byte> win32u_data);
void dispatch(windows_emulator& win_emu);
void dispatch(windows_emulator& win_emu);
void serialize(utils::buffer_serializer& buffer) const;
void deserialize(utils::buffer_deserializer& buffer);
void serialize(utils::buffer_serializer& buffer) const;
void deserialize(utils::buffer_deserializer& buffer);
void setup(const exported_symbols& ntdll_exports, std::span<const std::byte> ntdll_data,
const exported_symbols& win32u_exports, std::span<const std::byte> win32u_data);
void setup(const exported_symbols& ntdll_exports, std::span<const std::byte> ntdll_data,
const exported_symbols& win32u_exports, std::span<const std::byte> win32u_data);
std::string get_syscall_name(const uint64_t id)
{
return this->handlers_.at(id).name;
}
std::string get_syscall_name(const uint64_t id)
{
return this->handlers_.at(id).name;
}
private:
std::map<uint64_t, syscall_handler_entry> handlers_{};
private:
std::map<uint64_t, syscall_handler_entry> handlers_{};
static void add_handlers(std::map<std::string, syscall_handler>& handler_mapping);
void add_handlers();
static void add_handlers(std::map<std::string, syscall_handler>& handler_mapping);
void add_handlers();
};

View File

@@ -5,202 +5,193 @@
struct syscall_context
{
windows_emulator& win_emu;
x64_emulator& emu;
process_context& proc;
mutable bool write_status{true};
mutable bool retrigger_syscall{false};
windows_emulator& win_emu;
x64_emulator& emu;
process_context& proc;
mutable bool write_status{true};
mutable bool retrigger_syscall{false};
};
inline uint64_t get_syscall_argument(x64_emulator& emu, const size_t index)
{
switch (index)
{
case 0:
return emu.reg(x64_register::r10);
case 1:
return emu.reg(x64_register::rdx);
case 2:
return emu.reg(x64_register::r8);
case 3:
return emu.reg(x64_register::r9);
default:
return emu.read_stack(index + 1);
}
switch (index)
{
case 0:
return emu.reg(x64_register::r10);
case 1:
return emu.reg(x64_register::rdx);
case 2:
return emu.reg(x64_register::r8);
case 3:
return emu.reg(x64_register::r9);
default:
return emu.read_stack(index + 1);
}
}
inline bool is_uppercase(const char character)
{
return toupper(character) == character;
return toupper(character) == character;
}
inline bool is_syscall(const std::string_view name)
{
return name.starts_with("Nt") && name.size() > 3 && is_uppercase(name[2]);
return name.starts_with("Nt") && name.size() > 3 && is_uppercase(name[2]);
}
inline std::optional<uint32_t> extract_syscall_id(const exported_symbol& symbol, std::span<const std::byte> data)
{
if (!is_syscall(symbol.name))
{
return std::nullopt;
}
if (!is_syscall(symbol.name))
{
return std::nullopt;
}
constexpr auto instruction_size = 5;
constexpr auto instruction_offset = 3;
constexpr auto instruction_operand_offset = 1;
constexpr auto instruction_opcode = static_cast<std::byte>(0xB8);
constexpr auto instruction_size = 5;
constexpr auto instruction_offset = 3;
constexpr auto instruction_operand_offset = 1;
constexpr auto instruction_opcode = static_cast<std::byte>(0xB8);
const auto instruction_rva = symbol.rva + instruction_offset;
const auto instruction_rva = symbol.rva + instruction_offset;
if (data.size() < (instruction_rva + instruction_size) || data[instruction_rva] != instruction_opcode)
{
return std::nullopt;
}
if (data.size() < (instruction_rva + instruction_size) || data[instruction_rva] != instruction_opcode)
{
return std::nullopt;
}
uint32_t syscall_id{0};
static_assert(sizeof(syscall_id) <= (instruction_size - instruction_operand_offset));
memcpy(&syscall_id, data.data() + instruction_rva + instruction_operand_offset, sizeof(syscall_id));
uint32_t syscall_id{0};
static_assert(sizeof(syscall_id) <= (instruction_size - instruction_operand_offset));
memcpy(&syscall_id, data.data() + instruction_rva + instruction_operand_offset, sizeof(syscall_id));
return syscall_id;
return syscall_id;
}
inline std::map<uint64_t, std::string> find_syscalls(const exported_symbols& exports, std::span<const std::byte> data)
{
std::map<uint64_t, std::string> syscalls{};
std::map<uint64_t, std::string> syscalls{};
for (const auto& symbol : exports)
{
const auto id = extract_syscall_id(symbol, data);
if (id)
{
auto& entry = syscalls[*id];
for (const auto& symbol : exports)
{
const auto id = extract_syscall_id(symbol, data);
if (id)
{
auto& entry = syscalls[*id];
if (!entry.empty())
{
throw std::runtime_error(
"Syscall with id " + std::to_string(*id) + ", which is mapping to " + symbol.name +
", was already mapped to " + entry);
}
if (!entry.empty())
{
throw std::runtime_error("Syscall with id " + std::to_string(*id) + ", which is mapping to " +
symbol.name + ", was already mapped to " + entry);
}
entry = symbol.name;
}
}
entry = symbol.name;
}
}
return syscalls;
return syscalls;
}
inline void map_syscalls(std::map<uint64_t, syscall_handler_entry>& handlers,
std::map<uint64_t, std::string> syscalls)
inline void map_syscalls(std::map<uint64_t, syscall_handler_entry>& handlers, std::map<uint64_t, std::string> syscalls)
{
for (auto& [id, name] : syscalls)
{
auto& entry = handlers[id];
for (auto& [id, name] : syscalls)
{
auto& entry = handlers[id];
if (!entry.name.empty())
{
throw std::runtime_error(
"Syscall with id " + std::to_string(id) + ", which is mapping to " + name +
", was previously mapped to " + entry.name);
}
if (!entry.name.empty())
{
throw std::runtime_error("Syscall with id " + std::to_string(id) + ", which is mapping to " + name +
", was previously mapped to " + entry.name);
}
entry.name = std::move(name);
entry.handler = nullptr;
}
entry.name = std::move(name);
entry.handler = nullptr;
}
}
template <typename T>
requires(std::is_integral_v<T> || std::is_enum_v<T>)
requires(std::is_integral_v<T> || std::is_enum_v<T>)
T resolve_argument(x64_emulator& emu, const size_t index)
{
const auto arg = get_syscall_argument(emu, index);
return static_cast<T>(arg);
const auto arg = get_syscall_argument(emu, index);
return static_cast<T>(arg);
}
template <typename T>
requires(std::is_same_v<std::remove_cvref_t<T>, handle>)
requires(std::is_same_v<std::remove_cvref_t<T>, handle>)
handle resolve_argument(x64_emulator& emu, const size_t index)
{
handle h{};
h.bits = resolve_argument<uint64_t>(emu, index);
return h;
handle h{};
h.bits = resolve_argument<uint64_t>(emu, index);
return h;
}
template <typename T>
requires(std::is_same_v<T, emulator_object<typename T::value_type>>)
requires(std::is_same_v<T, emulator_object<typename T::value_type>>)
T resolve_argument(x64_emulator& emu, const size_t index)
{
const auto arg = get_syscall_argument(emu, index);
return T(emu, arg);
const auto arg = get_syscall_argument(emu, index);
return T(emu, arg);
}
template <typename T>
T resolve_indexed_argument(x64_emulator& emu, size_t& index)
{
return resolve_argument<T>(emu, index++);
return resolve_argument<T>(emu, index++);
}
inline void write_status(const syscall_context& c, const NTSTATUS status, const uint64_t initial_ip)
{
if (c.write_status && !c.retrigger_syscall)
{
c.emu.reg<uint64_t>(x64_register::rax, static_cast<uint64_t>(status));
}
if (c.write_status && !c.retrigger_syscall)
{
c.emu.reg<uint64_t>(x64_register::rax, static_cast<uint64_t>(status));
}
const auto new_ip = c.emu.read_instruction_pointer();
if (initial_ip != new_ip || c.retrigger_syscall)
{
c.emu.reg(x64_register::rip, new_ip - 2);
}
const auto new_ip = c.emu.read_instruction_pointer();
if (initial_ip != new_ip || c.retrigger_syscall)
{
c.emu.reg(x64_register::rip, new_ip - 2);
}
}
inline void forward_syscall(const syscall_context& c, NTSTATUS (*handler)())
{
const auto ip = c.emu.read_instruction_pointer();
const auto ip = c.emu.read_instruction_pointer();
const auto ret = handler();
write_status(c, ret, ip);
const auto ret = handler();
write_status(c, ret, ip);
}
template <typename... Args>
void forward_syscall(const syscall_context& c, NTSTATUS (*handler)(const syscall_context&, Args...))
{
const auto ip = c.emu.read_instruction_pointer();
const auto ip = c.emu.read_instruction_pointer();
size_t index = 0;
std::tuple<const syscall_context&, Args...> func_args
{
c,
resolve_indexed_argument<std::remove_cv_t<std::remove_reference_t<Args>>>(c.emu, index)...
};
size_t index = 0;
std::tuple<const syscall_context&, Args...> func_args{
c, resolve_indexed_argument<std::remove_cv_t<std::remove_reference_t<Args>>>(c.emu, index)...};
(void)index;
(void)index;
const auto ret = std::apply(handler, std::move(func_args));
write_status(c, ret, ip);
const auto ret = std::apply(handler, std::move(func_args));
write_status(c, ret, ip);
}
template <auto Handler>
syscall_handler make_syscall_handler()
{
return +[](const syscall_context& c)
{
forward_syscall(c, Handler);
};
return +[](const syscall_context& c) { forward_syscall(c, Handler); };
}
template <typename T, typename Traits>
void write_attribute(emulator& emu, const PS_ATTRIBUTE<Traits>& attribute, const T& value)
{
if (attribute.ReturnLength)
{
emulator_object<typename Traits::SIZE_T>{emu, attribute.ReturnLength}.write(sizeof(T));
}
if (attribute.ReturnLength)
{
emulator_object<typename Traits::SIZE_T>{emu, attribute.ReturnLength}.write(sizeof(T));
}
if (attribute.Size >= sizeof(T))
{
emulator_object<T>{emu, attribute.Value}.write(value);
}
if (attribute.Size >= sizeof(T))
{
emulator_object<T>{emu, attribute.Value}.write(value);
}
}
constexpr auto HUNDRED_NANOSECONDS_IN_ONE_SECOND = 10000000LL;
@@ -209,67 +200,65 @@ constexpr auto WINDOWS_EPOCH_DIFFERENCE = EPOCH_DIFFERENCE_1601_TO_1970_SECONDS
inline std::chrono::steady_clock::time_point convert_delay_interval_to_time_point(const LARGE_INTEGER delay_interval)
{
if (delay_interval.QuadPart <= 0)
{
const auto relative_time = -delay_interval.QuadPart;
const auto relative_ticks_in_ms = relative_time / 10;
const auto relative_fraction_ns = (relative_time % 10) * 100;
const auto relative_duration = std::chrono::microseconds(relative_ticks_in_ms) +
std::chrono::nanoseconds(relative_fraction_ns);
if (delay_interval.QuadPart <= 0)
{
const auto relative_time = -delay_interval.QuadPart;
const auto relative_ticks_in_ms = relative_time / 10;
const auto relative_fraction_ns = (relative_time % 10) * 100;
const auto relative_duration =
std::chrono::microseconds(relative_ticks_in_ms) + std::chrono::nanoseconds(relative_fraction_ns);
return std::chrono::steady_clock::now() + relative_duration;
}
return std::chrono::steady_clock::now() + relative_duration;
}
const auto delay_seconds_since_1601 = delay_interval.QuadPart / HUNDRED_NANOSECONDS_IN_ONE_SECOND;
const auto delay_fraction_ns = (delay_interval.QuadPart % HUNDRED_NANOSECONDS_IN_ONE_SECOND) * 100;
const auto delay_seconds_since_1601 = delay_interval.QuadPart / HUNDRED_NANOSECONDS_IN_ONE_SECOND;
const auto delay_fraction_ns = (delay_interval.QuadPart % HUNDRED_NANOSECONDS_IN_ONE_SECOND) * 100;
const auto delay_seconds_since_1970 = delay_seconds_since_1601 - EPOCH_DIFFERENCE_1601_TO_1970_SECONDS;
const auto delay_seconds_since_1970 = delay_seconds_since_1601 - EPOCH_DIFFERENCE_1601_TO_1970_SECONDS;
const auto target_time =
std::chrono::system_clock::from_time_t(delay_seconds_since_1970) +
std::chrono::nanoseconds(delay_fraction_ns);
const auto target_time =
std::chrono::system_clock::from_time_t(delay_seconds_since_1970) + std::chrono::nanoseconds(delay_fraction_ns);
const auto now_system = std::chrono::system_clock::now();
const auto now_system = std::chrono::system_clock::now();
const auto duration_until_target = std::chrono::duration_cast<
std::chrono::microseconds>(target_time - now_system);
const auto duration_until_target = std::chrono::duration_cast<std::chrono::microseconds>(target_time - now_system);
return std::chrono::steady_clock::now() + duration_until_target;
return std::chrono::steady_clock::now() + duration_until_target;
}
inline KSYSTEM_TIME convert_to_ksystem_time(const std::chrono::system_clock::time_point& tp)
{
const auto duration = tp.time_since_epoch();
const auto ns_duration = std::chrono::duration_cast<std::chrono::nanoseconds>(duration);
const auto duration = tp.time_since_epoch();
const auto ns_duration = std::chrono::duration_cast<std::chrono::nanoseconds>(duration);
const auto total_ticks = ns_duration.count() / 100 + WINDOWS_EPOCH_DIFFERENCE;
const auto total_ticks = ns_duration.count() / 100 + WINDOWS_EPOCH_DIFFERENCE;
KSYSTEM_TIME time{};
time.LowPart = static_cast<uint32_t>(total_ticks);
time.High1Time = static_cast<int32_t>(total_ticks >> 32);
time.High2Time = time.High1Time;
KSYSTEM_TIME time{};
time.LowPart = static_cast<uint32_t>(total_ticks);
time.High1Time = static_cast<int32_t>(total_ticks >> 32);
time.High2Time = time.High1Time;
return time;
return time;
}
inline void convert_to_ksystem_time(volatile KSYSTEM_TIME* dest, const std::chrono::system_clock::time_point& tp)
{
const auto time = convert_to_ksystem_time(tp);
memcpy(const_cast<KSYSTEM_TIME*>(dest), &time, sizeof(*dest));
const auto time = convert_to_ksystem_time(tp);
memcpy(const_cast<KSYSTEM_TIME*>(dest), &time, sizeof(*dest));
}
inline std::chrono::system_clock::time_point convert_from_ksystem_time(const KSYSTEM_TIME& time)
{
auto totalTicks = (static_cast<int64_t>(time.High1Time) << 32) | time.LowPart;
totalTicks -= WINDOWS_EPOCH_DIFFERENCE;
auto totalTicks = (static_cast<int64_t>(time.High1Time) << 32) | time.LowPart;
totalTicks -= WINDOWS_EPOCH_DIFFERENCE;
const auto duration = std::chrono::system_clock::duration(totalTicks * 100);
return std::chrono::system_clock::time_point(duration);
const auto duration = std::chrono::system_clock::duration(totalTicks * 100);
return std::chrono::system_clock::time_point(duration);
}
inline std::chrono::system_clock::time_point convert_from_ksystem_time(const volatile KSYSTEM_TIME& time)
{
return convert_from_ksystem_time(*const_cast<const KSYSTEM_TIME*>(&time));
return convert_from_ksystem_time(*const_cast<const KSYSTEM_TIME*>(&time));
}
#ifndef OS_WINDOWS
@@ -278,7 +267,7 @@ using __time64_t = int64_t;
inline LARGE_INTEGER convert_unix_to_windows_time(const __time64_t unix_time)
{
LARGE_INTEGER windows_time{};
windows_time.QuadPart = (unix_time + EPOCH_DIFFERENCE_1601_TO_1970_SECONDS) * HUNDRED_NANOSECONDS_IN_ONE_SECOND;
return windows_time;
LARGE_INTEGER windows_time{};
windows_time.QuadPart = (unix_time + EPOCH_DIFFERENCE_1601_TO_1970_SECONDS) * HUNDRED_NANOSECONDS_IN_ONE_SECOND;
return windows_time;
}

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More